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Fig. 1. We propose a new unbiased Monte Carlo estimator for volumetric transmittance based on a power series expansion. The zeroth-order term in our

estimator corresponds to a variant of ray marching. The higher-order terms ensure a bias-free estimate and are evaluated infrequently. The result can have

multiple orders of magnitude less variance than previous work with a similar number of density evaluations.

We present an in-depth analysis of the sources of variance in state-of-the-art

unbiased volumetric transmittance estimators, and propose several new

methods for improving their efficiency. These combine to produce a single

estimator that is universally optimal relative to prior work, with up to several

orders of magnitude lower variance at the same cost, and has zero variance

for any ray with non-varying extinction. We first reduce the variance of

truncated power-series estimators using a novel efficient application of U-

statistics. We then greatly reduce the average expansion order of the power

series and redistribute density evaluations to filter the optical depth estimates

with an equidistant sampling comb. Combined with the use of an online

control variate built from a sampled mean density estimate, the resulting

estimator effectively performs ray marching most of the time while using

rarely-sampled higher-order terms to correct the bias.

CCS Concepts: • Computing methodologies → Visibility; Ray
tracing.

Additional Key Words and Phrases: transmittance, Poisson estimator,

U-statistics, comb filter, power series

ACM Reference Format:
Markus Kettunen, Eugene d’Eon, Jacopo Pantaleoni, and Jan Novák. 2021.

An unbiased ray-marching transmittance estimator. ACM Trans. Graph. 40, 4,
Article 137 (August 2021), 20 pages. https://doi.org/10.1145/3450626.3459937

Authors’ addresses: Markus Kettunen, NVIDIA, mkettunen@nvidia.com; Eugene d’Eon,

NVIDIA, edeon@nvidia.com; Jacopo Pantaleoni, NVIDIA, jpantaleoni@nvidia.com;

Jan Novák, NVIDIA, jnovak@nvidia.com.

© 2021 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not for

redistribution.

1 INTRODUCTION

The visibility between two points in a scene is a fundamental quan-

tity in light transport simulation. In a vacuum, it takes on a binary

value. In a participating medium, however, scalar radiative trans-

fer [Chandrasekhar 1960] is used to statistically account for the

presence of scattering and absorbing particles. The number of par-

ticles intersecting a given ray is a random variable and visibility

becomes a fractional quantity: the probability of traversing uncol-

lided from 𝑎 to 𝑏,

𝑇 (𝑎, 𝑏) = exp

(
−

∫𝑏
𝑎

𝜇(𝑥 ) d𝑥

)
, (1)

where 𝜇(𝑥) is a known deterministic non-negative function (the

extinction coefficient at position 𝑥). The probability 𝑇 (𝑎, 𝑏) is some-

times called transmittance, and efficiently computing this value is

essential for rendering scenes with haze, fog, and clouds.

The integral in Equation 1 is rarely known in closed form. Excep-

tions include piecewise-homogeneous volumes, and simple atmo-

spheric models [Novák et al. 2018]. The general-purpose approach,

therefore, is to use Monte Carlo to estimate transmittance by point-

sampling 𝜇(𝑥) at a number of locations 𝑥 along the ray. Various

estimators have been proposed for this purpose, but no one estima-

tor is optimal in all cases, and their efficiency depends on several

parameters that are difficult to determine automatically.

In this paper, we present new methods for unbiased estimation of

Equation 1. After reviewing previous work in Section 2, we present

a new parametric variance analysis in Section 3 that reveals several
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key factors that limit the performance of existing estimators. This

inspires a number of novel variance reduction methods, which we

detail in Section 4. Combining all of these methods together, we

propose a new estimator in Section 4.7 that seems universally more

efficient than prior work, and can in many cases yield transmittance

estimates with orders of magnitude less variance at the same cost.

Our proposed estimator is based on a low-order Taylor series

expansion of the exponential function near a relatively accurate esti-

mate of the real optical depth obtained by multiple density lookups.

The use of a low-order expansion frees up sampling budget for more

accurate evaluation of both the expansion point and the Taylor se-

ries terms, which further allows lowering the evaluation order and

improving the samples. This self-reinforcing loop leads to an unbi-

ased low-variance estimator that most of the time only evaluates the

already quite accurate zeroth-order term. The proposed evaluation

of this term can be interpreted as the classical random-offset ray

marching solution [Pauly et al. 2000], whereas the remaining terms

can be interpreted as probabilistically-sampled correction terms

that make it unbiased, so we refer to our technique as unbiased ray
marching.

2 BACKGROUND AND RELATED WORK

In this section we review the main approaches for transmittance

estimation in particle and light transport literature and also identify

new connections to work outside of transport theory. For a review

of related distance-sampling techniques, we refer the reader to the

survey by Novák et al. [2018].

For brevity, we will sometimes abuse the term “density” to mean

the extinction coefficient 𝜇(𝑥 ) (which is the product of the number

density of particles at 𝑥 with the total cross section), and the interval

will sometimes be omitted (e.g., 𝑇 refers to 𝑇 (𝑎, 𝑏)).

2.1 Ray Marching and Bias

Transmittance is the exponential of the negative optical depth,

𝑇 (𝑎, 𝑏) = exp

(
−𝜏(𝑎, 𝑏)

)
= exp

(
−

∫𝑏
𝑎

𝜇(𝑥 ) d𝑥

)
. (2)

The optical depth 𝜏 can be easily approximated using ray marching
(uniformly-spaced samples along the interval) or by jittered and

unbiased Monte Carlo approaches, but the exponential of these

estimates will result in a biased estimator of exp(−𝜏) [Raab et al.

2006]. The jackknife method and its generalizations [Miller 1974],

and high-order quadrature rules [Muñoz 2014], can be used to reduce

the bias in some cases, but the error may still not be acceptable for

certain applications. The key challenge of transmittance estimation,

then, is to form unbiased estimates of 𝑇 , given only point samples

of 𝜇(𝑥 ). This relates more broadly to estimating a functional exp(−𝜆)

when 𝜆 is easily estimated in an unbiased fashion (see Jacob et al.

[2015] for an extensive analysis of the challenges posed by general

unbiased functional integration).

2.2 Poisson Point Processes

Many unbiased methods have been devised to estimate exponenti-

ated integrals like Equation 1, and these methods are closely related

to the zero-order estimation problem for point processes. A point

process 𝑁 (ℓ) is a stochastic counting process of the number of events

(such as particles) occurring in some time (or along a ray of length) ℓ .

For a Poisson point process (PPP), the events are independent and

𝑁 (ℓ) ∼ Po(𝜆ℓ ) is Poisson-distributed with rate 𝜆ℓ [Cox and Lewis

1966]. This rate is the integral of the intensity function 𝜆(𝑥) of the

process over the interval,

𝜆ℓ =

∫ ℓ
0

𝜆(𝑥 ) d𝑥, (3)

and allows the mean density of points to vary over the domain.

It is well known that a PPP is exactly the process governing the

scattering and absorption events in classical radiative transfer [Cox

and Lewis 1966; Mikhailov 1992], due to the assumption of inde-

pendent scattering centers. The correspondence between the two is

established by equating the rate of the point process 𝜆(𝑥 ) to the ex-

tinction coefficient of the medium 𝜇(𝑥 ) as the particle moves across

the interval when starting from 𝑎, 𝜆(𝑥 ) = 𝜇(𝑎 + 𝑥 ). Transmittance is

then the probability of finding no points/particles along the interval

𝑇 (𝑎, 𝑏) = Pr

[
𝑁 (ℓ) = 0

]
, ℓ = 𝑏 − 𝑎. (4)

Since the mean of a PPP is the rate 𝜆ℓ = E[𝑁 (ℓ)] = 𝜏(𝑎, 𝑏), the

exponential free paths of classical radiative transfer follow from the

zero-order probability of the Poisson distribution (the probability

mass function of a Poisson distribution with rate 𝜏 is 𝑒−𝜏𝜏𝑘/𝑘!,

which is an exponential for 𝑘 = 0).

2.3 Tracking Estimators

The best-known unbiased transmittance estimators are called track-
ing estimators due to the fact that they track a particle moving

from 𝑎 to 𝑏 by sampling a PPP to determine an ordered sequence

of collisions with the medium. For a constant-density medium, the

exponentially-distributed free-path lengths between collisions are

easily sampled [Novák et al. 2018]. For a nonhomogeneous medium,

the PPP can be sampled using the method of delta-tracking [Bertini

1963; Butcher and Messel 1958; Coleman 1968; Galtier et al. 2013;

Mikhailov 1970; Skullerud 1968; Woodcock et al. 1965; Zerby et al.

1961]. Using a majorant 𝜇(𝑥) ≥ 𝜇(𝑥), a denser process is sampled

whose rate / optical depth is easily computable:

𝜏(𝑎, 𝑏) =

∫𝑏
𝑎

𝜇(𝑥 ) d𝑥 . (5)

A rejection process is then used to thin the denser process down

to the desired result whereby each sampled point 𝑥𝑖 is kept with

probability 𝜇(𝑥𝑖 )/𝜇(𝑥𝑖 ). This rejection embodies the fictitious/null

collision concept of the transport literature. We note that this is

equivalent to a method in the point process literature known as

thinning [Pasupathy 2011] (identification of this correspondence

appears to be new). The earliest use of either method would appear

to be attributed to Ulam and von Neumann shortly after the war,

according to Carter et al. [1972].

While the majorant 𝜇 is often a constant, efficiency of delta-

tracking is improved with a majorant that more tightly bounds

the target density. Piecewise-linear [Klein and Roberts 1984] or

piecewise-polynomial [Szirmay-Kalos et al. 2011] majorants can be

efficiently sampled. For a general survey of methods for sampling

nonhomogeneous PPPs, see Pasupathy [2011].
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Somewhat remarkably, without knowing 𝜏 , delta-tracking can

be used to sample the number of real collisions in the estimation

interval, i.e., the Poisson-distributed variable 𝑁 (ℓ) ∼ Po(𝜏), by not

stopping at the first real collision. When 𝑣 is the mean of 𝑛 indepen-

dent samples of 𝑁 (ℓ), the minimum-variance unbiased estimator for

transmittance (given only 𝑣) is [Johnson 1951]

𝑇J =

(
1 − 1

𝑛

)𝑛𝑣
. (6)

The single-sample (𝑛 = 1) form of this estimator produces (assuming

0
0

= 1) the delta-tracking
1
transmittance estimator [Cramer 1978;

Novák et al. 2018], which returns a binary estimate depending upon

whether or not 𝑁 = 0. The case with 𝑛 > 1 provides an interesting

generalization of this estimator and, to the best of our knowledge,

it has not been applied to light transport. While this estimator is

optimal (given only 𝑣), in practice it can be improved upon by using

the sampled densities 𝜇(𝑥𝑖 ) directly. Another related estimator has

been proposed by Raab et al. [2006], obtained by averaging together

𝑛 partially stratified delta-tracking estimates.

2.3.1 Ratio tracking. Weighted tracking on a line [Cramer 1978]

(also known as ratio tracking in graphics [Novák et al. 2014]) ap-

plies an expected-value optimization to the 𝑛 = 1 delta-tracking

estimator to form a product of ratios of densities (null density
𝜇n(𝑥) = 𝜇(𝑥) − 𝜇(𝑥) to total density 𝜇(𝑥)). This is closely related

to a distance-sampling scheme known as weighted delta-tracking

(see e.g. Galtier et al. [2013] or Legrady et al. [2017]). Like delta-

tracking, a majorant PPP samples 𝑁 ∼ Po(𝜏 ) points 𝑥𝑖 in the interval

(𝑎, 𝑏). Instead of returning 0 as soon as a real particle is sampled,

the ratio-tracking estimator imparts a fractional opacity to each

sampled particle based on its probability of being fictitious,

𝑇rt =

𝑁∏
𝑖=1

(
1 − 𝜇(𝑥𝑖 )

𝜇(𝑥𝑖 )

)
=

𝑁∏
𝑖=1

𝜇n(𝑥𝑖 )

𝜇(𝑥𝑖 )
. (7)

Ratio tracking outperforms delta-tracking in most cases. However,

delta-tracking can use early termination after the first real parti-

cle is sampled and avoid many unnecessary density evaluations.

Therefore it can be beneficial to switch to delta-tracking after the

running product in Equation 7 goes below some threshold [Novák

et al. 2014].

2.4 Control Variates

A common theme in transmittance estimation is the utilization of

auxiliary density functions (null-collision density, control density,

etc.). While these auxiliary functions can serve different purposes,

for example to facilitate sampling of collisions and/or to reduce

variance, they (or their combination) can be interpreted as a control

variate (CV) [Georgiev et al. 2019; Novák et al. 2014]. Given an

analytically integrable control variate 𝜇c(𝑥) with 𝜏c =

∫𝑏
𝑎
𝜇c(𝑥) d𝑥 ,

1
Also known as the track-length transmittance estimator [Georgiev et al. 2019]

the optical depth integral can be rewritten as
2

𝜏(𝑎, 𝑏) = 𝜏c(𝑎, 𝑏) +

∫𝑏
𝑎

𝜇(𝑥 ) − 𝜇c(𝑥 ) d𝑥 . (8)

We will refer to 𝜇c(𝑥) and 𝜇r(𝑥) = 𝜇(𝑥) − 𝜇c(𝑥) as the control and
residual extinction coefficients, and to their respective integrals

𝜏c and 𝜏r as the control and residual optical depth. The majorant
residual coefficient 𝜇r(𝑥 ) = 𝜇(𝑥 ) − 𝜇c(𝑥 ) and optical depth 𝜏r = 𝜏 − 𝜏c

follow. The transmittance is then

𝑇 (𝑎, 𝑏) = 𝑇c(𝑎, 𝑏)𝑇r(𝑎, 𝑏) = exp (−𝜏c) exp

(
−

∫𝑏
𝑎

𝜇r(𝑥 ) d𝑥

)
. (9)

This transformation can dramatically reduce variance, particularly

when the control closely matches the true density.

2.4.1 Residual Ratio Tracking / Poisson estimator. The first appli-
cation of control variates in transmittance estimation was with

ratio tracking to produce the residual ratio tracking (RRT) estima-

tor [Novák et al. 2014]. Applying the control variate in Equation 9,

the estimator reads

𝑇rrt = exp (−𝜏c)
𝑁∏
𝑖=1

(
1 − 𝜇r(𝑥𝑖 )

𝜇r(𝑥𝑖 )

)
, (10)

where 𝑁 ∼ Po(𝜏r) points 𝑥𝑖 are generated by sampling a PPP with

intensity 𝜆(𝑥) = 𝜇(𝑥) − 𝜇c(𝑥) ≥ 0 in the interval (𝑎, 𝑏). In simple

words, 𝑁 is the number of jumps landing inside the interval be-

fore the bound 𝑏 is reached. While different articles may propose

different approaches for setting the intensity 𝜆(𝑥) of the PPP, this

estimator is conceptually equivalent to the one known as the Poisson
estimator [Beskos et al. 2006; Chen and Huang 2012; Fearnhead et al.

2008; Jacob et al. 2015; Papaspiliopoulos 2011], first presented by

Wagner [1987].

Concurrently, Jonsson et al. [2020] have also connected the ratio

tracking and Poisson estimator literature and proposed several new

variants of RRT that use online estimation of a constant control.

We also propose online control estimation, but include additional

variance-reduction techniques such as comb-filtering. We then ap-

ply this idea to a power-series formulation, which improves perfor-

mance and naturally includes ray marching as a biased member of

the general formalism.

2.5 Power-Series Formulation

Another family of unbiased transmittance estimators follows from

a power series (Taylor) expansion of the exponential in Equation 1.

This approach has been suggested as early as [Cameron 1954] and

has been used in estimation problems involving transformed obser-

vations [Neyman and Scott 1960]. One such form, which is used

to estimate the exponential of the Hamiltonian in particle physics

Markov-chain Monte Carlo simulations, due to Bhanot and Kennedy

[Bhanot and Kennedy 1985; Lin et al. 2000; Wagner 1987, 1988], can

be applied directly to transmittance estimation. Related applications

of this idea to transmittance estimation were independently pre-

sented by several authors [El Hafi et al. 2021; Georgiev et al. 2019;

2
In standard literature the CV and its integral are typically weighted by a coefficient

that controls the strength of applying the CV. Since we design our CVs heuristically

with the goal of maximizing positive correlations, we simply absorb the scaling factor

into the CV for brevity.
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Jonsson et al. 2020; Longo 2002]. Similar work has been proposed

by Lyne et al. [2015] in the context of Bayesian inference.

Georgiev et al. [2019] first introduced this formulation to com-

puter graphics, showing how it can in fact be seen as a very general

framework for expressing and analyzing all transmittance estima-

tors. Following their derivation [Georgiev et al. 2019, Equations (15)

and (16)], transmittance (1) can be expressed as:

𝑇 (𝑎, 𝑏) =

∞∑
𝑘=0

(−𝜏)𝑘
𝑘!

=

∞∑
𝑘=0

1

𝑘!

𝑘∏
𝑖=1

(
−

∫𝑏
𝑎

𝜇(𝑥 ) d𝑥

)
= 1 − 𝜏

1!

+

𝜏2

2!

− 𝜏3

3!

+ · · · . (11)

Monte Carlo estimation is then applied to each integer power of

the optical depth 𝜏𝑘 in the expansion. This is typically
3
achieved

by using 𝑘 numerical estimates {𝑋1, . . . , 𝑋𝑘 } of the negative optical
depth. As long as {𝑋1, . . . , 𝑋𝑘 } are independent and unbiased, i.e.,

E[𝑋𝑖 ] = −𝜏(𝑎, 𝑏) = −
∫𝑏
𝑎

𝜇(𝑥 ) d𝑥 , (12)

it follows that their product provides an unbiased estimate of the

𝑘-th power of −𝜏 (we drop the index since all 𝑋𝑖 have the same

expectation):

E

[
𝑘∏
𝑖=1

𝑋𝑖

]
=

𝑘∏
𝑖=1

E [𝑋𝑖 ] = E [𝑋 ]𝑘 = (−𝜏)𝑘 . (13)

This observation allows formulating the transmittance function

as the series of products of unbiased, independent estimates of

(negative) optical depth:

𝑇 (𝑎, 𝑏) = 𝑒E[𝑋 ]
=

∞∑
𝑘=0

1

𝑘!

E

[
𝑘∏
𝑖=1

𝑋𝑖

]
. (14)

Various estimators then follow from estimating random finite por-

tions of this expansion with the appropriate weight corrections

(explained below).

The above derivation highlights the importance of using inde-

pendent and unbiased estimates of 𝜏 within a single term 𝜏𝑘 of

the power series. Correlations across the terms of the sum, how-

ever, are perfectly acceptable. In fact, high-order terms are typically

computed from the low-order ones using the recursive formulation
[Bhanot and Kennedy 1985; Georgiev et al. 2019]

𝑇 (𝑎, 𝑏) = 1 − 𝜏

1

(
1 − 𝜏

2

(
1 − 𝜏

3

(. . . , (15)

which has been used in Equation 14.

A control variate 𝜇c(𝑥 ) is often applied to Equation 14 to yield

𝑇 (𝑎, 𝑏) = 𝑇c(𝑎, 𝑏)𝑇r(𝑎, 𝑏) = 𝑒−𝜏c𝑒−𝜏r

= 𝑒−𝜏c

∞∑
𝑘=0

1

𝑘!

𝑘∏
𝑖=1

(
−

∫𝑏
𝑎

𝜇r(𝑥 ) d𝑥

)
= 𝑒−𝜏c

∞∑
𝑘=0

1

𝑘!

E

[
𝑘∏
𝑖=1

𝑌𝑖

]
, (16)

3
See the appendix of Glasser [1962] for an interesting alternative.

where 𝑌𝑖 are unbiased, independent estimates of (negative) residual

optical depth (we use 𝑋 and 𝑌 to distinguish estimates of optical

depth and residual optical depth, respectively).

Galtier et al. [2013], El Hafi et al. [2021] and Georgiev et al. [2019]

proposed to set the control variate to a strict majorant, 𝜇c(𝑥 ) = 𝜇(𝑥 ),

to avoid sign oscillations in power series estimates of𝑇r(𝑎, 𝑏). Based

on our analysis from Section 3, we will revisit this decision and

propose a new way of setting the control variate in Section 4. Notice

how −𝜏c effectively acts as a pivot for the Taylor series expansion.

This interpretation is central to our investigations and we will refer

to −𝜏c as the pivot in the rest of the text.

2.5.1 Numerical evaluation. In practice, the evaluation of the infi-

nite power series needs to be limited to sampling a finite number of

terms; Georgiev et al. [2019] have shown that virtually all unbiased

transmittance estimators can be ultimately related to sampling this

power series expansion. In this respect, existing unbiased estimators

can be classified into two broad categories.

Single-term estimation. Georgiev et al. [2019] showed that the

delta-tracking and ratio-tracking estimators can be described in the

power series formulation by noting that these estimators estimate a

single term in Equation 11 at a time; when 𝑁 points are sampled

by the 𝜇-driven PPP, these estimators estimate (−𝜏)
𝑁 /𝑁 !. The gen-

eral form of the single-term power series estimator is called the

generalized Poisson estimator [Fearnhead et al. 2008],

𝑇
single

= 𝑒−𝜏c

1

𝑁 ! 𝑝(𝑁 )

𝑁∏
𝑖=1

𝑌𝑖 , (17)

where 𝑝(𝑁 ) is the probability mass function of 𝑁 . Using delta-

tracking results in a Poisson distribution, 𝑁 ∼ Po(𝜏r), but other

distributions can be used [Fearnhead et al. 2008; Jonsson et al. 2020].

For the standard delta-tracking estimator, the random variable 𝑌 is

replaced by a 𝜇c-weighted Bernoulli random variable and the power

series derivation of this estimator is a special case of a more general

derivation [Glasser 1962, appendix].

Truncated-series estimators. The recursive power series relation
in Equation 15 directly produces a truncated-series estimator that

estimates all terms in the Taylor expansion up to and including 𝜏𝑁

(see Figure 2 for an illustration). If 𝑁 is a discrete random variable

and 𝑃𝑘 = Pr[𝑁 ≥ 𝑘], the truncated estimator for Equation 16 is

𝑇trunc = 𝑒−𝜏c

𝑁∑
𝑘=0

1

𝑘! 𝑃𝑘

𝑘∏
𝑖=1

𝑌𝑖 . (18)

Instead of selecting 𝑁 from a Poisson process, Russian roulette is

commonly employed and 𝑃𝑘 becomes the product of the continua-

tion probabilities.

2.5.2 Bhanot & Kennedy roulette. A useful scheme where the ex-

pansion is always evaluated up to order 𝐾 and then terminated

using term-wise roulette decisions follows from the equivalence

(which we generalize here) [Bhanot and Kennedy 1985]

𝑒𝑥 =

𝐾∑
𝑘=0

𝑥𝑘

𝑘!

+

𝑐

𝐾 + 1

©«𝑥
𝐾+1

𝑐𝐾 !

+

𝑐

𝐾 + 2

(
𝑥𝐾+2

𝑐2𝐾 !

+ . . . . (19)
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3

+
w4Y

4
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Fig. 2. Transmittance estimation via truncated power series (here illustrated for sampled order 𝑁 = 3) using a constant control variate and multiple (𝑀 = 4)

density evaluations (black dots) per each estimate 𝑌𝑖 of the negative residual optical depth.

Here 𝑐 is a roulette control parameter restricted to 0 < 𝑐 < 𝐾 + 1

and 𝑐/(𝐾 + 𝑘) is the probability of expanding from order 𝐾 + 𝑘 − 1

to order 𝐾 + 𝑘 . Bhanot and Kennedy proposed using a continuous

expansion parameter 𝑐 > 0, setting𝐾 = ⌊𝑐⌋, which we will refer to as
the Bhanot & Kennedy (BK) estimator. The BK roulette, specifically

the parameter 𝑐 , provides a very explicit control over the cost of the

estimator.

Independently, Georgiev et al. [2019] proposed the p-series CMF
estimator that sets 𝑐 = 𝜏 to the majorant and selects 𝐾 such that 99%

of the majorant cumulative mass function (CMF) is accumulated

(assuming 𝜏 is a safe and reasonable guess for the true optical depth

when selecting 𝐾 ).

2.6 Additional Related Work

Delta-tracking and ratio tracking each have variations known as

the next-flight estimators [Cramer 1978; Novák et al. 2018] that fall

somewhat in between the tracking and truncated series forms. Also,

Georgiev et al. [2019] introduced a number of additional estimators,

including the p-series cumulative estimator that employs a different

roulette strategy than described above, but concluded the p-series

CMF was best overall. We refer the reader to these works for further

details.

In this work we use multiple correlated density evaluations per

estimate of optical depth, which was mentioned by Georgiev et al.

[2019] but, to the best of our knowledge, has not been applied before.

3 EFFICIENCY ANALYSIS

In this section, we investigate the efficiency of single-term and

truncated power series estimators. We measure the sensitivity of

each estimator’s variance to various factors, which leads to key

insights that inform the design of new estimators.

3.1 Efficiency and Cost

Following prior work we define the efficiency of an estimator to be

the reciprocal of the variance-cost product,

Eff[𝑇 ] =

1

Var[𝑇 ]Cost[𝑇 ]

(20)

where Cost[𝑇 ] is the mean number of density 𝜇(𝑥) evaluations.

For both single-term and truncated power series estimators, this

will depend on 𝑁 : the number of unbiased estimates of negative

residual optical depth (𝑌𝑖 ) needed to estimate a subset of the power

series in Equation 16. By abandoning the physical picture of tracking

estimators, the power series formulation permits a new parameter𝑀

that we call the tuple size, which is the number of density evaluations

per estimate 𝑌𝑖 (see Figure 2). The estimator for 𝑌 is then

𝑌 = − 1

𝑀

𝑀∑
𝑖=1

𝜇r(𝑥𝑖 )

𝑝(𝑥𝑖 )
= − 1

𝑀

𝑀∑
𝑖=1

𝜇(𝑥𝑖 ) − 𝜇c(𝑥𝑖 )

𝑝(𝑥𝑖 )
(21)

where 𝑝(𝑥) is the density for sampling 𝑥 ∈ (𝑎, 𝑏) and the total cost

is Cost[𝑇 ] = E[𝑁 ] ·𝑀 .

The efficiency of a given estimator will depend on a number of pa-

rameters that can be adjusted: the control variates, the tuple size𝑀 ,

and (in the case of BK roulette) the power series expansion param-

eter 𝑐 . Ideally, an automatic procedure would optimally configure

these parameters given only limited knowledge of the density statis-

tics in the scene. To discern more about how this could be achieved,

we need a detailed picture of how these parameters influence vari-

ance. While it is known that the efficiency of residual ratio tracking

improves with increasing majorant [Georgiev et al. 2019] and basic

heuristics for setting control variates have been discussed [Jonsson

et al. 2020; Novák et al. 2014], to the best of our knowledge, little to

no detailed investigation of tuple size𝑀 or expansion parameter 𝑐

has been presented for any truncated estimator.

3.2 Roulette Variance in the Uniform Medium

Ultimately, variance in a transmittance estimator will arise due to

two factors, which we will call 𝑌 -variance and roulette variance, and
we will show that they are in fact weakly coupled. Transmittance

estimators are random functions 𝑓
𝑇

(𝑌1, . . . , 𝑌𝑁 ) of 𝑁 random vari-

ables 𝑌𝑖 . By 𝑌 -variance, we mean the variance in the optical depth

estimates𝑌𝑖 themselves, which leads to variance in𝑇 upon insertion

into 𝑓
𝑇
. To better understand the influence of 𝑌 -variance, we can

turn it off by considering a uniform medium and uniform sampling

𝑝(𝑥𝑖 ) = 1/ℓ . The only variance that remains is then due to 𝑁 being

a random variable, causing 𝑓
𝑇
to evaluate different portions of the

power series. This variance arises due to the roulette scheme of a

truncated estimator (or PPP sampling for a single-term estimator),

and we call it roulette variance.
In Figure 3 we compare the roulette variance of single-term and

truncated power series estimators. We use residual ratio tracking,

with known variance (Equation 56), as the single-term estimator

and the Bhanot & Kennedy estimator to represent truncated power

series; we derive the variance of the BK estimator in Appendix C.2.1.
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Fig. 3. Variance of cost-matched single-term and truncated estimator, rep-

resented by RRT (solid) and BK (dashed) estimators for uniform media as a

function of negative pivot 𝜏c in three configurations of optical depth 𝜏 and

expansion parameter 𝑐 .

In each plot, the RRT rate is cost-matched to the BK estimator by

adjusting the majorant 𝜇 such that 𝜏r = 𝜏 − 𝜏c = ℓ(𝜇 − 𝜇c) = E[𝑁𝐵𝐾 ],

where ℓ is the length of the estimation interval (see also Equation 53).

The most efficient estimator is the one with the lowest variance. We

observe two important trends as the pivot −𝜏c is varied; first, we

can achieve arbitrarily low variance by moving the negative pivot

close to the true optical depth of the medium (𝜏c = 𝜏 ). Second, when

the pivot is near this optimal value, the truncated estimator (BK) is

universally better than the single-term estimator (RRT).

This analysis hints at the possibility of finding a single transmit-

tance estimator that performs best in all cases, but also highlights

the need for an accurate pivot estimator in order to achieve this. It

is known that ratio tracking can outperform truncated estimators in

some cases [Georgiev et al. 2019] and we see this again here for the

uniform medium: when the pivot is far from its optimal value, the

truncated estimator sees a significant explosion of variance, while

the single-term estimator sees far less. This issue is lessened by

estimating more of the series via the expansion parameter 𝑐 , but

at a cost of more density evaluations. Increasing 𝑐 also widens the

performance gap between the two estimators (Figure 3, bottom row)

and extends the range of pivots where the truncated estimator is

better than the single-term.

Figure 4 further demonstrates how the expansion parameter 𝑐

influences the efficiency of power series estimators by plotting in-

verse efficiency. We see that increasing 𝑐 widens the range of pivots

where high efficiency can be obtained. It also shows a universal

trend shared with the single-term estimator: increasing E[𝑁 ] mono-

tonically improves the overall efficiency, regardless of the pivot.

3.3 Varying Media

While rays passing through uniform density are common in practice

(especially empty space with 𝑇 = 1), the analysis above is not

representative of the full picture. We now introduce increasing
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Fig. 5. Variance of the BK (thick) and U-BK (thin) estimators (𝐾 = 𝑐 = 2) for

two different optical thicknesses. The uniform medium (black) is compared

to five different levels of density fluctuations (colored). The pivot with the

lowest variance for the BK estimator is indicated by black dots and shifts

to the right with increasing density fluctuations, making the optimal pivot

difficult to predict. Application of U-statistics always reduces the variance

and also widens the range of pivots where theminimum variance is achieved.

amounts of 𝑌 -variance to observe how and when the total variance

changes.

In Figure 5 we compare the variance of the truncated estimator

as different amounts of fluctuation in the density 𝜇(𝑥) are intro-

duced while preserving the mean of 𝜇(𝑥). Each thick colored line

corresponds to a different amount of fluctuation in 𝜇(𝑥 ) (thereby in-

troducing𝑌 -variance). The uniformmedium (pure roulette variance)

is shown in black for reference. This comparison is comprehensive

in that, like with ratio tracking, it follows from the power series for-

mulation that the variance of the BK estimator is purely a function

of the mean and variance of the 𝑌 estimates (together with the pivot

value)—the exact profile of the density fluctuations is irrelevant (this

is because the BK roulette is independent of 𝑌𝑖 ).

We find that the variance of the BK estimator is dominated by

either 𝑌 -variance or roulette variance: they are weakly coupled. Far
from the optimal pivot (where the black curves merge with the

rest) the variance is essentially the same as that of a medium with

constant density, so increasing𝑀 will have little impact. Conversely,

no matter how good the pivot, variance in the samples 𝑌𝑖 limits the

minimum-achievable variance. Further, as 𝑌 -variance decreases (by

increasing𝑀 , say), the pivot needs to be closer to the optimal value

to avoid roulette variance limiting the gains (to stay inside the black

curves in Figure 5), suggesting that the sample budget of any online

pivot estimation should be positively correlated to𝑀 .
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3.4 Summary

From the analysis in this section we take away several key insights:

• Regardless of the optical depth or variation of density along

a ray, the pivot is a critical parameter for achieving optimal

efficiency with either single-term or truncated estimators.

• Near the optimal pivot value, truncated estimators outper-

form single-term when 𝑌 -variance is low.

• The lowest achievable variance of the estimator is ultimately

limited by variance in the optical depth estimates.

4 HIGH-EFFICIENCY POWER SERIES ESTIMATORS

In this section, we propose new truncated power series estimators

inspired by the previous analysis. These estimators build on previ-

ous work through the introduction of several novel methods, largely

under the theme of 𝑌 -variance reduction and pivot estimation. We

describe each of these methods separately, with both experimental

and theoretical motivation for each, before detailing their combina-

tion. For notational simplicity, and unless stated otherwise, we will

discuss estimation of transmittance without the application of the

control variate. Extending the proposed improvements to residual

transmittance 𝑇r is trivial, necessitating mere substitution of the

corresponding terms.

4.1 Symmetrization via U-Statistics

In order to estimate transmittance with a power series estimator

that evaluates all terms up to order 𝑁 (Equation 18), we need to

obtain 𝑁 estimates of the negative optical thickness, 𝑋1 to 𝑋𝑁 , and

evaluate the following sum:

𝑇trunc = 1 +

𝑋1

1! 𝑃1

+

𝑋1𝑋2

2! 𝑃2

+ · · · +

𝑋1 · · ·𝑋𝑁
𝑁 ! 𝑃𝑁

, (22)

where 𝑃𝑘 is the probability of evaluating at least 𝑘 orders. This

specific estimator follows from the recursive formulation of the

power series [Bhanot and Kennedy 1985; Georgiev et al. 2019] but

is not the only unbiased estimator with the correct expectation. We

show how to reduce the variance of this estimator with no additional

density evaluations.

The key insight in reducing the variance of Equation 22 is noting

that the first estimate 𝑋1 appears in all of the terms, but the last

estimate 𝑋𝑁 is used only once, and so increasing 𝑁 has little im-

pact on the variance of the linear term, and so on. Our goal is to

ensure that all estimates are in a symmetric position with respect to

impacting the sum, and that we utilize the estimates maximally for

each term in the estimator. We can achieve this for the first-order

term in Equation 22 by replacing 𝑋1 by the mean of all estimates:

𝑚1 B
𝑋1 + · · · + 𝑋𝑁

𝑁
(23)

Analogously, we replace the 𝑋1𝑋2 product in the second-order term

by the mean of all two-term products 𝑋𝑖𝑋 𝑗 :

𝑚2 B
𝑋1𝑋2 + · · · + 𝑋1𝑋𝑁 + 𝑋2𝑋3 + · · · + 𝑋𝑁−1𝑋𝑁(𝑁

2

) . (24)

In order to generalize this idea to the 𝑘-th order, we sum the

products of all possible 𝑘-wide combinations—the 𝑘-th elementary
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Fig. 6. Variance of BK (left) and U-BK (right) estimators for a ray with

optical depth 𝜏 = 4 and small 𝑌 -variance. The pivot that minimizes variance

for each value of expansion parameter 𝑐 is indicated (approximately) by

the black dots. In addition to reducing variance, U-statistics flattens the

variance profile with respect to pivot. This helps to mitigate any increase

in variance due to errors in online pivot estimation and provides a simple

common goal for pivot estimation—the negative optical depth of the ray.

symmetric sum:

𝑠𝑘 B
∑

1≤𝑖1< · · ·<𝑖𝑘 ≤𝑁
𝑋𝑖1 · · ·𝑋𝑖𝑘 , (25)

where 𝑠0 B 1, and divide it by the number of 𝑘-wide combinations;

this yields a general formula for computing the 𝑘-th symmetric

mean:

𝑚𝑘 B
𝑠𝑘(𝑁
𝑘

) . (26)

This variance-reduction procedure is well-known in probability

theory: Equation 22 is a statistic 𝑓 (𝑋1, · · · , 𝑋𝑁 ) of 𝑁 independent

and identically-distributed random variables. It is known [Halmos

1946] that the unique and minimum-variance estimator of such a

statistic is the symmetric function 𝑓 [𝑁 ]
(𝑋1, · · · , 𝑋𝑁 ) that is invariant

to the order of the 𝑋𝑖 inputs. The generalized means𝑚𝑘 are known

as U-statistics [Lee 1990].

Utilizing U-statistics as the numerators in Equation 22 yields a

novel U-statistics power series estimator of transmittance:

𝑇U = 1 +

𝑚1

1! 𝑃1

+

𝑚2

2! 𝑃2

+ · · · +

𝑚𝑁

𝑁 ! 𝑃𝑁
. (27)

This approach can lower the variance of any estimator that estimates

more than one term of the power series at the same time (tracking

estimators are already fully symmetric). When combined with the

generalized Bhanot & Kennedy roulette scheme (19) we refer to this

estimator as the U-BK estimator.
In addition to reducing variance, U-statistics make it easier to

find the optimal pivot. This can be seen in the variance comparisons

in Figure 5 (varying 𝑌 -variance with 𝑐 fixed) and Figure 6 (varying

𝑐 with 𝑌 -variance fixed). For BK, the negative pivot 𝜏c that achieves

minimumvariance shifts to the right of𝜏 as𝑌 -variance or 𝑐 increases,

making this a difficult parameter to automatically determine. In

addition to universally lowering the variance, we see that U-statistics

flattens the variance profile in regions not dominated by roulette

variance (see Figure 5). Importantly, regardless of 𝑌 -variance or 𝑐 ,

the true optical depth 𝜏 is a (near) optimal setting for 𝜏c in all cases,

making the goal of pivot estimation simple: to estimate the negative

optical depth.

The main caveat of naively evaluating a U-statistics estimator

is the exponential computational complexity: the total number of

combinations required for evaluating the series up to order N is
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(𝑁
0

)
+

(𝑁
1

)
+ · · · +

(𝑁
𝑁

)
= 2

𝑁
. A simple approximation of the opti-

mal estimator could be built in 𝑂(𝑁 2
) time by averaging 𝑁 rota-

tions of the 𝑋𝑖 estimates (taking the average of {𝑓 (𝑋1, 𝑋2, · · · , 𝑋𝑁 ),

𝑓 (𝑋2, 𝑋3, · · · , 𝑋1), . . .}). However, efficient full symmetrization is

possible by using the Girard-Newton formulas [Mead 1992], in-

dependently found by Albert Girard and Isaac Newton in the 17th

century, which relate numbers 𝑥1 to 𝑥𝑁 to their elementary sym-

metric sums 𝑠𝑘 . By precomputing the power sums 𝑄𝑘 =

∑𝑁
𝑖=1

𝑥𝑘
𝑖
,

we have

𝑠𝑘 =

1

𝑘

𝑘∑
𝑖=1

(−1)
𝑖−1𝑠𝑘−𝑖𝑄𝑖 , (28)

a simple and efficient recurrence relation for the elementary sym-

metric sums.

Although the Girard-Newton formulas provide a convenient way

for directly calculating the elementary symmetric means, we found

them to suffer from numerical precision problems. Algorithm 1

provides pseudo-code for a novel incremental algorithm to compute

the elementary symmetric means that we designed to address these

robustness issues while potentially allowing to add new samples on-

the-fly. An explanation of the algorithm is provided in Appendix B.

We recommend using this algorithm in practical implementations.

Our algorithm and the Girard-Newton formulas both run in time

𝑂(𝑁𝑍 ), where 𝑁 is the number of samples and 𝑍 is the number of

orders evaluated. Normally we evaluate all orders (𝑍 = 𝑁 ) but if

the sample count 𝑁 is high enough, the highest orders might not

contribute and we might want to make 𝑍 smaller than 𝑁 to save

time. These algorithms reduce the time of evaluating the elementary

symmetric means from 𝑂(2
𝑁

) to 𝑂(𝑁 2
), or 𝑂(𝑁𝑍 ), and make the

combination estimator practical.

ALGORITHM 1: ElementaryMeans

Input :Samples 𝑥1, . . . , 𝑥𝑁 ; Evaluation order 𝑍

Output :Elementary symmetric means𝑚0, ...,𝑚𝑍

𝑚0 = 1 ;

𝑚𝑘 = 0 (for 𝑘 = 1 to 𝑍 ) ;

for 𝑛 = 1 to 𝑁 do
for 𝑘 = min(𝑛,𝑍 ) to 1 do

𝑚𝑘 =𝑚𝑘 +
𝑘
𝑛
(𝑚𝑘−1

𝑥𝑛 −𝑚𝑘 ) ;
end

end

4.2 Selecting a Pivot

We presented empirical evidence in Section 3 that the pivot plays a

key role in minimizing the variance of transmittance estimators and

that, with U-statistics, the negative optical depth is a universally

good choice. We now provide additional theoretical motivation for

this observation before discussing online pivot estimation.

Interpreting the negative control thickness −𝜏c as the expansion

point, or pivot, of the Taylor series of the exponential provides an

insightful new way to analyze power series estimation. Consider

the general problem of evaluating 𝑒𝑥 , for a given 𝑥 ∈ R, using its

exp(x)
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Fig. 7. Moving the pivot (black dot) of the Taylor series expansion closer to

the point where we want to evaluate it (red) has a dramatic effect on its con-

vergence. Under the power series formulation of transmittance estimation

this means that a more accurate control variate permits more aggressive

roulette on higher-order terms in the series, lowering the cost.
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Fig. 8. The variance of a non-symmetric p-series (BK) estimator quickly

reaches a plateau as the expansion order is raised (increasing 𝑐) while

maintaining a fixed pivot (blue). This is because the additional samples are

used only in the higher-order terms, which have an insignificant contribution

in the Taylor expansion of 𝑇 . Moving the pivot closer to the true optical

depth (dashed green) worsens the efficiency because even fewer terms

play a significant role in the expansion. Our symmetric U-BK estimators

continually improve with larger 𝑐 because additional samples improve all

terms in the expansion.

series expansion centered at point 𝑝:

𝑒𝑥 = 𝑒𝑝
∞∑
𝑘=0

(𝑥 − 𝑝)
𝑘

𝑘!

≈ 𝑒𝑝
𝑁∑
𝑘=0

(𝑥 − 𝑝)
𝑘

𝑘!

. (29)

Different values of the pivot 𝑝 correspond to different polynomial

fits: the closer 𝑝 is to 𝑥 , the faster the Taylor polynomial converges

to the true value at 𝑥 (see Figure 7 for demonstration). For transmit-

tance estimation, this is another way of saying that the “mass” that

each term in the series contributes to the final estimate of 𝑇 shifts

as the pivot changes (see [Georgiev et al. 2019, Figures 5 and 6]).

For a uniform medium, where all optical depth estimates are

deterministic (zero variance), the optimal estimator is the one with

pivot 𝑝 = −𝜏 , where the Taylor expansion converges at the zeroth

order: 𝑒𝑥 = 𝑒−𝜏 (1 + 𝜏r + · · ·) with 𝜏r = 0. This may seem like a

purely theoretical curiosity, because knowing 𝜏 immediately gives

𝑇 , but it does ensure that any estimator using an estimate of −𝜏 for
𝑝 will have zero variance for rays with uniform density, such as

through empty portions of the volume.

Whether or not 𝑝 = −𝜏 is a good choice in general, though, is

more complicated. Without a symmetric estimator, once the optical

depth estimates are random, a pivot derived from a majorant density

to suppress alternating signs at consecutive orders tends to result

in lower variance [El Hafi et al. 2021; Galtier et al. 2013; Georgiev

et al. 2019]. This stems from a complicated interaction between the
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sampling probabilities for each term in the series and their expected

contributions (masses). We note that (lack of) symmetry can shed

more light on why this happens.

In Figure 5 and Figure 6 we compare the variance of the truncated

BK estimator as the pivot changes. As the expansion parameter 𝑐 or

the level of Y-variance change, the optimal pivot (black dots) moves.

Note how in Figure 6 (left), at each of the optimal pivot locations, an

increase in 𝑐 has no effect on the variance, which plateaus despite the

use of more samples. We show this also in Figure 8 with the medium

and pivot held fixed as more samples are used by the estimator. The

BK estimator is unable to utilize the extra samples and becomes

wasteful, no matter whether it uses the tight majorant (blue line) or

the true optical depth 𝜏 (orange line) as the pivot. In the latter case,

the plateau is reached instantly.

The explanation for this effect is, to some extent, the lack of

estimator symmetry, resulting in a bad sampling of the low order

terms. Because the 𝑘-th sample 𝑌𝑘 impacts only the 𝑘-th and higher-

order terms in the BK series, i.e., the 𝑘 − 1 preceding terms are not

influenced by 𝑌𝑘 , the benefits of adding extra samples (and orders)

diminish. Regardless of the pivot, the convergence will plateau as

the expected contribution of the higher orders eventually tends

to zero and additional samples stop improving the result. With a

more accurate pivot, which results in even higher relative expected

contribution of the low order terms, the problem is exacerbated,

making the convergence plateau even sooner.

The situation changes once we utilize U-statistics because each

additional sample improves all of the terms in the Taylor expansion.

Computing the pivot using the majorant density no longer improves

performance, while the approximate density mean always yields

better variance, especially in the low sample-count setting (Figure 8).

As we noted above, in addition to lowering the variance relative to

the non-symmetric estimator, U-statistics creates a range of pivots

containing 𝑝 = −𝜏 where the variance is near-optimal, and so we

will refer to 𝑝 = −𝜏 as the optimal pivot. Appendix A contains a

more thorough analysis of the effects of using the approximate mean

pivot.

4.2.1 Variance of higher-order terms. Assuming we have obtained

a good pivot, a natural next question is to understand how the

𝑌 -variance relates to the required order of the Taylor expansion.

With a good pivot, the variance of the higher-order terms decreases

exponentially with the order. Let us assume a relatively accurate

pivot, 𝑝 ≈ E[𝑋 ], such that our shifted samples 𝑌𝑖 B 𝑋𝑖 − 𝑝 have

approximately zero expectation. For simplicity, let us also assume

that our estimates for the terms E[𝑌 ]
𝑘
are given by simple products

𝑌1 · · ·𝑌𝑘 . The variance of the product is

Var[𝑌1 · · ·𝑌𝑘 ] ≈ E[𝑌 2
]
𝑘 ≈ Var[𝑌 ]

𝑘 , (30)

which relies on the assumption that E[𝑌 ]
2 ≈ 0. Since shifting a

random variable does not change its variance, if we decrease the

variance of our samples 𝑋𝑖 to a factor 𝑠 , the variance of our estimate

for E[𝑋 −𝑝]
𝑘
will fall geometrically to the factor of 𝑠𝑘 , quickly mak-

ing the higher-order terms insignificant. For instance, decreasing

the variance of our samples by 50% would result in a decrease of

the variance of the 10th order term to around 1/1000 of its original

value.

This means that even a small reduction in 𝑌 -variance makes the

Taylor series converge with fewer terms. This, in turn, allows us

to save computation by more aggressive Russian roulette. We can

use this freed sampling budget for bringing the variance of the

samples down even more – a potential self-amplifying feedback

loop. However, all of this needs a good pivot that might not always

be available.

4.2.2 Sampled pivots and additional symmetry. One way of obtain-

ing accurate approximations of the optimal pivot is to subdivide the

volume, precompute localized statistics, and query them along each

ray. We take a lighter approach and propose to estimate the optimal

pivot on-the-fly by taking an additional independent sample 𝑋𝑁+1

of the integral −𝜏 .
A single sample might not seem enough to estimate −𝜏 . However,

we observe that we can apply a procedure analogous to the rotations

briefly mentioned in Section 4.1 to effectively increase the total

number of samples to 𝑁 + 1: If we denote the entire set of samples

{𝑋1, · · · , 𝑋𝑁+1} by𝑋 , we may consider all 𝑁 +1 estimators resulting

from taking each unbiased sample 𝑋𝑖 as the pivot in turn, using

the other samples 𝑋 \ {𝑋𝑖 } to build our symmetrized estimator

from Section 4.1, and averaging the result. Formally, this unbiased

estimator of order 𝑁 reads

𝑇 =

1

𝑁 + 1

𝑁+1∑
𝑖=1

𝑓𝑁
(
𝑋𝑖 , 𝑋 \ {𝑋𝑖 }

)
, (31)

where the estimator 𝑓𝑁 is given by

𝑓𝑁 (𝑝,𝑌 ) = 𝑒𝑝
𝑁∑
𝑘=0

𝑚𝑘 (𝑌 − 𝑝)

𝑘! 𝑃𝑘
. (32)

Here,𝑚𝑘 is the 𝑘-th symmetric mean of the samples (excluding the

pivot), with the samples 𝑋𝑖 shifted to be relative to the pivot. The

samples 𝑋𝑖 are independent unbiased estimators of −𝜏 and each

sample acts as the pivot in turn within the average. This ensures

that all samples in the expanded set have a symmetric contribution

in the new estimator.

4.3 Combed Estimators

In this section, we focus on reducing 𝑌 -variance. Equation 30 sug-

gests that the variance of higher-order terms 𝑘 is proportional to

the 𝑘-th power of the variance of the estimators 𝑋𝑖 : hence, even

a small reduction in variance of each individual 𝑋𝑖 will transform

into much larger reductions for the higher-order terms of the series

expansion. We propose to use an unbiased, multi-sample estima-

tor that strikes a better quality-cost trade-off than single-sample

estimators 𝑋𝑖 = − 𝜇(𝑥𝑖 )

𝑝(𝑥𝑖 )
, where 𝑥𝑖 ∼ 𝑝 . The estimator is based on a

randomized Cranley-Patterson (CP) rotation of equidistant points;

other sampling patterns are briefly discussed in Section 6.

Without loss of generality, we assume the integration interval to

be [0, ℓ). We use an𝑀-tuple of equidistant points {𝑢 𝑗 : ℓ 𝑗𝑀−1} 𝑗=1..𝑀

that we randomly offset and wrap around the [0, ℓ) interval using

the CP rotation. For each order 𝑖 , we use a single random number

𝑥𝑖 ∈ [0, ℓ) to obtain the rotated set {𝑥𝑖 𝑗 : (𝑥𝑖 + 𝑢 𝑗 ) mod ℓ} 𝑗=1..𝑀 and
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estimate the optical depth as:

𝑋𝑖 = − 1

𝑀

𝑀∑
𝑗=1

𝜇(𝑥𝑖 𝑗 )

𝑝(𝑥𝑖 𝑗 )
. (33)

Notice that this estimator is equivalent to convolving the inte-

grand with an𝑀-point Dirac comb:

𝜇⊗(𝑠) =

1

𝑀

𝑀∑
𝑗=1

𝜇

(
(𝑠 + 𝑢 𝑗 ) mod ℓ

)
. (34)

Henceforth, we will refer to the resulting estimators as combed
estimators.

Fast convergence rate of equidistant sampling. Using multiple den-

sity evaluations induces higher evaluation cost than single-sample

optical depth estimators. It is thus important to consider whether

the U-statistics estimator, which utilizes all estimates maximally,

yields lower variance with few high-quality estimates or with many

low-quality ones.

The reason why using combs dedicating𝑀 evaluations to each 𝑋

estimate is advantageous stems from the very fast convergence rate

of equidistant sampling: while random sampling with𝑀 evaluations

yields error reduction of 𝑂(1/
√
𝑀), integrating with equidistant

combs features convergence rate of 𝑂(1/𝑀) (if the integrand has

bounded slope). We also observed that with an equal density query

budget, denser combs (i.e., more accurate optical depth estimates),

together with fewer evaluated orders (to stay in the budget), is more

efficient than trying to leverage the U-statistics estimator with more

combinations of less accurate estimates.

Our proposed algorithms will take this idea to a logical maximum:

we try to maximally benefit from the improved convergence rate by

utilizing as dense sampling combs as possible (i.e., a large𝑀), and

compensate for the larger𝑀 by a very aggressive Russian roulette

to keep the truncation order 𝑁 low.

4.3.1 Combing as density reshuffling. As shown in Equation 34, an

M-point equidistant sample of the density function corresponds to

a single evaluation of the convolution of the density with an M-

point Dirac comb. This convolution does not change the value of the

density integral: it merely reshuffles its density into a form that is

more suitable forMonte Carlo estimation (see Figure 9). This inspires

a new general invariance principle for transmittance estimation: we
can alter the density along the ray in any integral-preserving way

and not change the result. With this principle, we can maintain

the physical picture of a particle traversing the interval or use the

Volterra integral formulation of transmittance [Georgiev et al. 2019]

and still benefit from 𝑌 -variance reduction using a tuple size𝑀 . We

can also design additional density-reshuffling transformations that

further reduce 𝑌 -variance.

4.4 Endpoint Matching

The CP rotation utilized in the combed estimator may introduce

an artificial discontinuity. This is easy to realize when noticing

that rotating the set of samples around the integration interval

is equivalent to rotating the integrand (while keeping the set of

samples fixed). The original interval endpoints 𝑎 and 𝑏 coincide

N
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M
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M
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Fig. 9. Top row:𝑀-tap Dirac comb filtering is used to reshuffle the original

density 𝜇(𝑥 ) (left) to reduce𝑌 variance. Bottom row: an affine transformation

(red) that preserves optical depth is applied to the density to match the

endpoints and remove the discontinuities in the combed densities with only

two extra density evaluations.

at a new location 𝑥𝑖 where the rotated integrand 𝜇cp
features a

discontinuity–see Figure 10.

In practice, if the original 𝜇 had a bounded maximum slope,

which is often the case in practice, 𝜇cp
no longer does. This breaks
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Fig. 10. Discontinuity.

the assumption that guarantees the im-

proved convergence rate of equidistant

sampling.

We can remedy the discontinuity by

another density reshuffling operation,

namely subtracting a zero-mean affine

control variate that interpolates the end-

points:

𝜇★(𝑠) := 𝜇(𝑠) +

(
1

2

− 𝑠

ℓ

)
(𝜇(ℓ) − 𝜇(0)). (35)

This modification eliminates the discontinuity caused by the random

offset (𝜇★(0) = 𝜇★(ℓ)) while the integral remains unchanged, re-

enabling the improved convergence rate from equidistant sampling.

See the bottom row of Figure 9 for an illustration. Appendix D

provides further formulas and simplifications.

4.5 Russian Roulette

Sampling the order of the series expansion 𝑁 is typically performed

incrementally by Russian roulette, and several methods have been

discussed [Bhanot and Kennedy 1985; Booth 2007; Georgiev et al.

2019; Girolami et al. 2013; Moka et al. 2019; Papaspiliopoulos 2011].

Our work builds on the Bhanot & Kennedy roulette described in

Section 2.5.2.

Using a sampled pivot that is close to the true optical thickness

reduces the expected contributions of the first and higher orders

of the Taylor expansion. Moreover, with the combed and endpoint-

matched𝑀-sample U-BK estimator, both the bias and variance of the

zeroth order term are often very small, while most of the variance

comes form the higher-order (correction) terms.

Using all the samples for the pivot would improve the estimator

(which has superlinear convergence in𝑀), but it would also make

the method biased; however, we can still take advantage of this ob-

servation by allocating a larger portion of the samples to the zeroth

order, and sampling the higher-order terms more infrequently.
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In order to do that, we terminate the series at the zeroth order with

probability 𝑝𝑍 , and only sample the first and higher order termswith

probability 1 − 𝑝𝑍 times the original BK roulette probabilities. This

is equivalent to using the original BK roulette with the acceptance

probability of the first-order term multiplied by 1 − 𝑝𝑍 , leading to
the following probabilities of evaluating at least the first 𝐾 terms:

𝑃0 = 1 (36)

𝑃1 = · · · = 𝑃𝐾 = 1 − 𝑝𝑍 , (37)

and the following conditional probability for adding the subsequent

terms:

𝑃𝑘 |𝑘−1
=

𝑐

𝑘
, where 𝑘 > 𝐾 . (38)

This amortizes the cost of the correction terms, allowing us to

use larger tuple sizes 𝑀 , which in turn improves the pivot and

exponentially reduces the expected contribution and variance of

the higher-order terms. Algorithm 2 lists the pseudo-code.

In practice, we found that truncating the series at the zeroth term

in 90% of cases, i.e., 𝑝𝑍 = 0.9, provides a large increase in efficiency

across all of our tests. Using the BK scheme with parameters𝐾 = 𝑐 =

2 lowers the expected evaluation order from 𝑒−1 ≈ 1.71828 to about

0.31945, decreasing our expected sample count from 𝑒 ≈ 2.71828 to

1.31945, and allowing us approximately twice larger tuple sizes𝑀 .

The superlinear convergence obtained by increased tuple sizes more

than offsets the variance increase caused by the higher weights of

the correction terms.

Raising this probability to 99% yields even lower variance, but

at the cost of occasional outliers (manifesting as “fireflies”). More-

over, evaluating only the zeroth-order term 90% of the time already

provides 90% of the possible cost savings, effectively amortizing

the cost of the higher orders, so higher values are unlikely to strike

much better efficiency.

4.6 Tuple Size Deduction

With all the above improvements, we obtain an estimator that has

superlinear convergence properties in the tuple size. While this

allows very efficient reduction of transmittance noise by adding

more samples, we need to strike a practical balance. We found that a

sample count related to the one used in the p-series CMF estimator

[Georgiev et al. 2019] works well in practice, and we describe its

evaluation and use here.

As a first step, we employed a simple grid search to obtain a fit

for the expected sample count used by the p-series CMF with 99%

mass (given the control optical thickness 𝜏):

E[𝑁CMF] ≈
⌈

3
√

(0.015 + 𝜏)(0.65 + 𝜏)(60.3 + 𝜏)

⌉
. (39)

This approximation is (by empirical analysis) asymptotically correct,

has mean absolute error of 0.34 samples for 𝜏 < 10 and a maximum

relative error of 9% for 𝜏 ≥ 10. We found this more efficient than

the approach used by Georgiev et al. [2019].

We then use Algorithm 3 to solve for𝑀 such that a generalized BK

roulette with given 𝐾 produces the same mean number of density

evaluations as p-series CMF. This uses an exact formula, Equation 53,

for the expected evaluation order E[𝑁𝐵𝐾 ]. We need one sample per

order plus one for the pivot, and hence, to achieve the same cost,

ALGORITHM 2: AggressiveBKRoulette
Input :𝑝𝑍 = 0.9

Output :maximum order 𝑘 and probabilities 𝑃0, . . . , 𝑃𝑘

𝑤0 = 1;

𝑃 = 1 − 𝑝𝑍 ;

𝑢 = rand();

// Stop at the zeroth-order term with probability 𝑝𝑍

if 𝑃 ≤ 𝑢 then
return 0;

end

// BK with 𝐾 = 𝑐 = 2;

𝐾 = 𝑐 = 2;

for 𝑘 = 1 to 𝐾 do
𝑃𝑘 = 𝑃 ;

end
for 𝑘 = 𝐾 + 1 to ∞ do

// Compute the continuation probabilities

𝑐𝑘 = min(𝑐/𝑘, 1) ;

// Update the probability of sampling at least order k

𝑃 = 𝑃 · 𝑐𝑘 ;
// Russian roulette termination

if 𝑃 ≤ 𝑢 then
return 𝑘 − 1;

end
// Final probability for order k

𝑃𝑘 = 𝑃 ;

end

ALGORITHM 3: BKExpectedEvalOrder
Input :𝑝𝑍 , 𝑐 , 𝐾 = ⌊𝑐 ⌋ assumed

Output :expected evaluation order of our roulette

// Evaluate E[𝑁𝐵𝐾 ] = 𝐾 +

(
𝐾 ! /𝑐𝐾

) (
𝑒𝑐 − ∑𝐾

𝑘=0
𝑐𝑘/𝑘!

)
𝐾 = ⌊𝑐 ⌋ ;
𝑡 = 1;

𝑠𝑢𝑚 = 1;

for 𝑘 = 1 to 𝐾 do
𝑡 = 𝑡 ∗ 𝑐/𝑘 ;
𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝑡 ;

end
𝐸𝑁 = 𝐾 + (exp(𝑐) − 𝑠𝑢𝑚)/𝑡 ;

// Non-zero orders are evaluated with probability 1 − 𝑝𝑍
return (1 − 𝑝𝑍 ) · 𝐸𝑁 ;

ALGORITHM 4: DetermineTupleSize (for unbiased ray marching)

Input :control optical thickness 𝜏
Output : tuple size M matching the p-series CMF cost

𝑁𝐶𝑀𝐹 =

⌈
3
√

(0.015 + 𝜏 )(0.65 + 𝜏 )(60.3 + 𝜏 )

⌉
;

𝑁𝐵𝐾 = BKExpectedEvalOrder(2) ; // ≈ 0.31945.

return max(1,
⌊
𝑁𝐶𝑀𝐹 /(𝑁𝐵𝐾 + 1) + 0.5

⌋
) ;
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the expected sample count E[𝑁𝐵𝐾 ] + 1 times the tuple size𝑀 must

match E[𝑁𝐶𝑀𝐹 ]. In other words, our desired tuple size is given by

𝑀 =

E[𝑁𝐶𝑀𝐹 ]

E[𝑁𝐵𝐾 ] + 1

. (40)

Algorithm 4 provides pseudo-code for the final algorithm.

In practice, in order to not oversample high-density but low-

variance volumes, we recommend using the difference between the

majorant and minorant optical thicknesses as the control parameter

𝜏 , when a minorant is available.

4.7 Assembling the Estimators

The following paragraphs summarize the construction of our final

estimators.

4.7.1 The unbiased ray-marching estimator. Our final unbiased esti-
mator is summarized in Algorithm 5 and works as follows: We first

determine the number of density evaluations,𝑀 , for estimating each

sample of negative optical thickness 𝑋𝑖 (as described in Section 4.6),

and we determine the highest order of the power series, 𝑁 , using

our modified BK roulette (Section 4.5); these first two steps do not

impact each other.

Then we compute 𝑁 + 1 combed estimates (𝑋1, . . . , 𝑋𝑁+1) using

equidistant, CP-rotated evaluations (Section 4.3) and apply endpoint

matching (Section 4.4).

Finally, we use each𝑋𝑖 as the pivot (Equation 31) and evaluate the

Taylor series using the symmetrized estimator (Section 4.1). Specifi-

cally, we use our new elementary-means algorithm (Algorithm 1)

with the remaining 𝑁 estimates 𝑋 \ {𝑋𝑖 }.
Notice that endpoint matching is beneficial only if the ends of the

interval have different density values, and we hence treat it as an

optional robustness feature. Moreover, at very low sample counts,

e.g.𝑀 < 8, we disable endpoint matching, since we found that the

additional overhead of its two additional evaluations 𝜇(0) and 𝜇(ℓ)

was not worth the resulting variance reduction.

Most of the time our estimator evaluates only the zeroth-order

term, when the roulette samples evaluation order 𝑁 = 0. In this

case, the estimate is simply 𝑒𝑋1
, where 𝑋1 is the single estimation

of negative optical depth using equidistant evaluations of the den-

sity from 𝑎 to 𝑏. This zeroth-order term corresponds to the biased

random-offset ray marching method [Pauly et al. 2000], optionally

coupled with our endpoint-matching control variate, and the step

size user parameter set by our method. The higher-order terms

correct the bias, so we call our estimator unbiased ray marching.

4.7.2 The biased ray-marching estimator. One of the interesting

conclusions from Section 4.5 is that with all our optimizations in

place and enough equidistant samples and a sampled pivot, we can

make the Russian roulette most often truncate at the constant term

and still obtain very little variance. This is possible because our

sampled pivots become increasingly good estimates for the real

integral with the addition of more equidistant samples, and hence

even a zeroth-order Taylor polynomial often results in a very good

and cost-effective estimate for the real integral.

This behavior is partially explained by the following observation:

When the pivot 𝑋1 is an unbiased estimate for the integral, the

zeroth-order approximation 𝑒𝑋1
is actually in a sense accurate to

ALGORITHM 5: Unbiased ray marching

Input : Interval length ℓ ; control optical thickness 𝜏
Output :Transmittance𝑇

𝑀 = DetermineTupleSize(𝜏 );

𝑁, (𝑃0, . . . , 𝑃𝑁 ) = AggressiveBKRoulette(𝐾 = 𝑐 = 2, 𝑝𝑍 = 90%);

𝜇ℓ , 𝜇0 = EvalDensity(ℓ), EvalDensity(0); // optional

for 𝑖 = 1 to 𝑁 + 1 do
𝑢𝑖 = rand();

𝑋𝑖 = − ℓ
𝑀

· ∑𝑀−1

𝑗=0
EvalDensity(

ℓ
𝑀

(𝑢 + 𝑗 ));

𝑋𝑖 = 𝑋𝑖 − ℓ
𝑀

(
1

2
−𝑢𝑖

)
(𝜇ℓ − 𝜇0); // optional

end
T = 0;

for 𝑖 = 1 to 𝑁 + 1 do
𝑚0, . . . ,𝑚𝑁 = ElementaryMeans(𝑋 \ {𝑋𝑖 } −𝑋𝑖 );
𝑇 = 𝑇 +

1

𝑁 +1
𝑒𝑋𝑖

∑𝑁
𝑘=0

𝑚𝑘
𝑘!𝑃𝑘

;

end

the first order, essentially gaining an order of accuracy for free:

E[𝑒𝑋1 − 𝑒E[𝑋 ]
] = 𝑒E[𝑋 ] E

[
𝑒𝑋1−E[𝑋 ] − 1

]
= 𝑒E[𝑋 ] E

[
(𝑋1 − E[𝑋 ]) +

(𝑋1 − E[𝑋 ])
2

2!

+ · · ·
]

= 𝑒E[𝑋 ] E

[
0 +

(𝑋1 − E[𝑋 ])
2

2!

+ · · ·
]
.

(41)

This suggests that we can build an effective low-bias estimator

by always truncating the series at the zeroth order, that is to say,

evaluating only

𝑒−𝜏 ≈ 𝑒𝑋1 · 1 = 𝑒𝑋1 , (42)

where 𝑋1 is an unbiased estimator for the optical depth, which we

obtain with combing and by using all of the transmittance budget

to increase the tuple size 𝑀 . We optionally couple this technique

with our endpoint matching control variate (see Algorithm 6).

This again reduces to random-offset ray marching [Pauly et al.

2000] with endpoint matching and the following very important

difference: our step size is calculated automatically and it adapts

to the medium as required, rather than being left as an arbitrary

user parameter. This yields an efficient and simple algorithm with

minimum observable bias.

ALGORITHM 6: Biased ray marching

Input : Interval length ℓ ; control optical thickness 𝜏
Output :Transmittance𝑇

𝑀 =

⌈
3
√

(0.015 + 𝜏 )(0.65 + 𝜏 )(60.3 + 𝜏 )

⌉
;

𝑢 = rand();

𝑋 = − ℓ
𝑀

· ∑𝑀−1

𝑗=0
EvalDensity(

ℓ
𝑀

(𝑢 + 𝑖));

𝑋 = 𝑋 − ℓ
𝑀

(
1

2
−𝑢

) (
EvalDensity(ℓ) − EvalDensity(0)

)
; // optional

𝑇 = 𝑒𝑋 ;
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5 RESULTS

In this section we compare our proposed unbiased and biased trans-

mittance estimators to ratio tracking (RT) [Cramer 1978], residual ra-

tio tracking (RRT) [Novák et al. 2014] and the p-series CMF [Georgiev

et al. 2019] estimators in a variety of scenes featuring participating

media. For the unbiased methods we report variance, and for our

biased ray marching we measure mean squared error of one sample.

In Figure 1 and Figure 11 we study the performance of the in-

dividual estimators in a path tracer. All volumes in the figure are

stored using the VDB data structure [Museth 2013] that additionally

provides aggregate volumetric statistics (minimum, maximum, and

mean density) over 8 × 8 × 8 voxel regions—super voxels. We utilize

the statistics for computing tighter (residual) majorants for tracking

estimators. For p-series CMF and our estimators, we use the mean

densities in super voxels to “warp” the lookups. Along each ray,

we perform regular tracking [Amanatides and Woo 1987] through

the super grid and build a piecewise-constant probability density

function (PDF) from the super-voxel means. We then distribute the

lookup points proportional to this PDF using the inversion method.

For our estimators, specifically, we generate CP-rotated equidistant

samples in the [0, 1] primary interval and then transform them into

a warped comb along the ray.

The insets in the figure show results for different estimators at

one path sample per pixel. Since the efficiency of certain estimators

improves with higher lookup counts, we normalize the comparison

by adjusting them to yield an approximately equal number of density

lookups per transmittance estimate. We use the p-series CMF estima-

tor as the baseline and uniformly increase local (residual) majorants

such that the tracking estimators utilize approximately the same

number of lookups (predicted by Equation 39). For our methods we

employ the automatic tuple size mechanism discussed in Section 4.6.

This results in a relatively fair, architecture and implementation

agnostic comparison.

In the following we list the specifics of individual scenes:

• Plume features absorptive smoke. Transmittance estimation

is the only source of noise in this scene.

• Box features indirect illumination from an area light sur-

rounded by an absorptive medium. Despite the extra noise

from simulating up to four light bounces, the impact of the

different transmittance estimators is still clearly visible.

• Cloud features single-scattering illumination due to two

point lights. We use equiangular sampling [Kulla and Fajardo

2011] to sample collisions along primary rays. Transmittance

along the primary ray and the shadow rays is estimated with

the studied estimator. The improvement from the transmit-

tance estimation is partially masked by the noise from dis-

tance sampling: only a certain amount of noise would be

removed even with exact transmittance values.

• Glass with Smoke features frequency-dependent absorptive

smoke in a reflective glass box and shows how improved

transmittance estimation can affect the quality of volume

rendering either directly or through reflections. To remove

noise due to randomly selecting reflection/transmission in-

teractions with the glass, we visualize and measure variance

only on paths that undergo two consecutive transmission

interactions; these contribute most of the color.

• Figure 1 features another frequency-dependent absorptive

medium in a glass embedding, and the same selective variance

measurement as the Glass with Smoke scene.

Our unbiased estimator obtains an MSE reduction between 1.5×
and 13× across all scenes compared to the previous state-of-the-art

method for each scene. Our biased estimator provides an additional
improvement of 1.1× to 2× on top of that. Note that the MSE values

include also other sources of noise (such as from global illumination

in the Box scene, or single-scattering in the Cloud scene), which

partly masks the improvements in transmittance estimation.

Scaling to higher quality. Figure 12 shows a simple test comparing

the variance of our estimators to Georgiev et al.’s [2019] p-series

CMF as a function of the number of density evaluations on a single

example density that exhibits high frequencies and fractal behavior.

For p-series CMF, we examined two methods of increasing the

expected number of samples: by averaging multiple evaluations,

and by multiplying the optical thickness (in this case the majorant)

by a constant greater than 1. For ourmethods we increase the control

optical thickness similarly, but it is only used for calculating the

tuple size.

Increasing the majorant helps the p-series CMF estimator in this

particular instance, but this is not always the case, as we will see

later on. Our method always benefits from increasing the tuple size

due to the improved pivot and lower-variance correction samples,

but we see bumps in the convergence curves due to the non-uniform

frequency response of our equidistant sampling combs. Despite the

bumps, we always found equidistant sampling to perform better

than breaking the frequency response with e.g. stratified (jittered)

sampling or a low-discrepancy pattern.

Our methods clearly show a higher rate of convergence which

continually increases their lead by orders of magnitude when tar-

geting noise-free transmittance estimates, with the biased variant

featuring slightly lower MSE at the cost of a small amount of bias.

Quantifying the bias. Figure 16 studies the bias of our biased

method in the Plume scene, which features a wide range of optical

thicknesses. The figure also includes a variant of our method that is

otherwise the same, but uses stratified (jittered) sampling instead

of equidistant sampling combs. As predicted, our equidistant combs

compute the optical thicknesses with less variance, which leads to

less bias and variance in the transmittance estimates. The bias from

only evaluating the zeroth-order term is often relatively invisible to

the eye.

Endpoint matching. Figure 13 shows another test where we an-
alyze the behavior of our estimators with and without endpoint

matching on two different densities. The top of the figure shows a

case where the density is very different at the two endpoints (e.g.,

when a ray starts outside and terminates inside a medium). This

difference creates a strong discontinuity in the periodic extension of

the function. Our endpoint-matching control variate removes this

discontinuity, greatly reducing the variance and improving the con-

vergence rate. The effect is particularly big when the discontinuity

is large compared to the other variation in the density function (as
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Ratio tracking (RT) Residual RT P-series CMF Unbiased ray march. Biased ray march.

[Cramer 1978] [Novák et al. 2014] [Georgiev et al. 2019] (ours) (ours)
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Fig. 11. A comparison of our unbiased and biased estimators (two rightmost columns) to ratio tracking, residual ratio tracking and the p-series CMF estimators

on a variety of rendered content featuring participating media. The Plume, Box and Glass with Smoke scenes contain purely absorptive media, while the

Cloud scene shows single-scattering illumination by point lights, rendered using equiangular sampling to sample collisions along primary rays.
†
: The GPU

times are heavily influenced by SIMT and roulette-based branching in our non-wavefront GPU renderer. See the end of Section 5 for discussion.
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Fig. 12. A graph of variance (respectively MSE) of our unbiased and biased

estimators as well as that of p-series CMF [Georgiev et al. 2019] as a function

of sample count. For p-series CMF, we display twomethods of increasing the

expected sample count: the first (dashed blue line) is by averaging multiple

evaluations, the second (dashed yellow line) is increasing the control optical

thickness (in this case the majorant). Both our estimators display a faster

convergence rate. The right-hand-side shows the density profile of the

integrated medium.
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Fig. 13. Endpoint matching (top, dashed purple) may improve the conver-

gence rate over the base method (green) when the interval ends are at very

different densities compared to the general density variation (top right).

Endpoint matching is not beneficial when the ends are at similar densities

(bottom).

in this example). The bottom plot shows a counter example where

the control variate does not yield any improvement. The plot shows

that the overhead of performing the extra lookups at the endpoints

is relatively low; we see only mild reduction in efficiency, especially

when targeting high-quality transmittance estimates.

Pure transmittance estimation. Figure 14 analyzes the impact of

gradually enabling some of our proposed techniques.

We make the following observations:

• Using tight per-pixel majorants causes the p-series CMF es-

timator to take discrete jumps in the base number of terms

evaluated, due to it activating RR after reaching 99% mass

only–this appears as blocky variations in variance/efficiency.

• With enough samples (e.g. with the global majorant), our

equidistant sampling combs coupled with the symmetriza-

tion provided by U-statistics already provide a significant

efficiency improvement.

• Enabling the endpoint matching control variate allows in

some areas a relatively large variance reduction, but the

largest improvement is obtained by combining the previous

techniques with our aggressive roulette, that allows using

even large tuples by sampling fewer orders.

• In regions with a low-frequency density function, we obtain

up to 5 orders of magnitude improvements in efficiency. With

higher frequencies our final estimator achieves 2 to 3 orders

of magnitude lower variance.

Since our estimator gains efficiency with larger and larger tu-

ples, we also compared to the p-series CMF estimator with varying

majorants 𝜇 (1, 10, and 100 times larger than the tight per-pixel

majorant) against single evaluations of our estimators with tuple

size 𝑀 = DetermineTupleSize(𝜇); see Figure 15. This comparison

reveals that using larger majorants with the p-series CMF estimator

can be very detrimental at low optical thicknesses; the majorant

effectively acts as a worse and worse pivot. This leads to increased

variance from its stochastic Taylor approximations: the Russian

roulette continuation probability after the CMF threshold of 99%

approaches zero with increasing pivots, while there is still 1% of

the contributions left to integrate. In the second and third row, the

increasing majorant appears to squeeze the large variance (low effi-

ciency) bump at the center of the first row (using the tight majorant)

towards the bottom, where the transmittance 𝑇 approaches 1.

Implementation. Our unidirectional GPU path tracer is imple-

mented in the open source Falcor [Benty et al. 2020] framework.

We report the rendering times of the 1080p images on an NVIDIA

Quadro RTX 6000 graphics card with the following disclaimer: Our

implementation does not properly balance the workloads of the

transmittance estimates inside the thread groups. This results in a

SIMT-based slowdown for methods that rely on Russian roulette

for cost amortization, such as our unbiased ray marching. The poor

utilization of thread groups explains the higher GPU times of unbi-

ased ray marching in Figure 11: synchronizing the evaluation orders

makes the unbiased ray marcher as fast as the others, but causes

occasional correlation artifacts. Using queues and persistent threads

might offer a better solution.

6 DISCUSSION

In Section 5, we have seen how our novel unbiased ray-marching

estimator provides a major efficiency improvement across all our

tests compared to previous state of the art, and how the biased

ray-marching solution reaches even lower MSE at equal cost.

In the following we discuss a different perspective on our U-

statistics estimator as well as alternative strategies to equidistant

combing and connections to the more general theme of sample

stratification.

Complex factorization of the truncated Taylor polynomial. Another
path to obtaining our U-statistics estimator is to use the complex
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Fig. 14. An ablation study of the unbiased ray marching estimator by simulating transmittance through a 3D slab with varying density (bottom left). The slab

is lit from behind with a directional light of intensity 1 such that the pixels of the image plane capture the transmittance through the volumetric cube. The

density cross-section of the top plane is shown in the top left: the fractal dimension and variance increase towards the right. The cross-section is the same at

every height, but the average density is varied such that transmittance is 1 at the bottom of the image plane, and roughly 5 × 10
−5

at the top.

Rows: The rows compare (1) the p-series CMF estimator; (2) our U-BK estimator (𝑐 = 2) with sampled pivot and combing; (3) the same with our endpoint

matching control variate added; and (4) our full unbiased ray marching method which adds the aggressive roulette scheme (Section 4.5). All U-BK variants

employ automatic tuple size deduction (Section 4.6) to match the expected sample count to p-series CMF.

Columns: The two first columns show equal sample count results with tight per-pixel majorants, whereas the two last columns show equal sample count

results using a single global majorant. The odd columns show the result of a single evaluation, while the even columns show the inverse efficiency (lower is

better). Note the logarithmic color scale: our final estimators result in two to five orders of magnitude better efficiency than previous state-of-the-art.

factorization of the truncated power-series polynomial:

𝑁∑
𝑘=1

1

𝑘! 𝑃𝑘

𝑘∏
𝑖

𝑋𝑖 = 𝑐0

𝑁∏
𝑖=1

(𝑋𝑖 − 𝑐𝑖 ) (43)

and apply the generic estimator of products of unbiased estima-

tors recently suggested by Lee et al. [2019, Eq.(6)]. The resulting

permuted estimator matches exactly our U-statistics estimator, and

despite the presence of complex coefficients, the imaginary part

cancels out. Importantly though, our algorithms can exploit the

structure of the truncated Taylor series to evaluate all combinations

in 𝑂(𝑁𝑍 ) time, whereas the direct evaluation of Lee et al. [2019,

Eq.(6)] is #𝑃-hard.

Connections of combing to stratified sampling. Combing can be

seen as a form of stratified sampling applied to each individual
estimate of the integral of the null density. It is important to note

that the separate integral estimates are uncorrelated. Using a single

stratified set of random numbers across all orders is not possible, as

that would result in correlated integral estimates whose products

would result in biased estimates of the powers of −𝜏 . Georgiev
et al. [2019] had previously suggested another form of stratification,

across multiple evaluations of the transmittance integral. This form of

stratification is orthogonal and can be combined with our approach:

it is sufficient to stratify the Cranley-Patterson rotations (𝑥0, ..., 𝑥𝑁 )

across different evaluations of the estimator, for example using Latin

hypercube sampling or some other randomized QMC sequence.

Interpretation as non-local tracking estimators. Given the equiv-

alence of certain p-series and tracking estimators highlighted ear-

lier [Georgiev et al. 2019], it is worth noting that combing can be

applied also to, e.g., (residual) ratio tracking. Instead of performing

a single lookup at each point of the PPP, the tracker would compute
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Fig. 15. This figure uses the setup of Figure 14 to compare the variance and inverse efficiency of the p-series CMF estimator (left 3 columns) to that of our

unbiased estimator (right 3 columns) when the majorant is raised respectively by 1, 10, and 100 times compared to the tight per-pixel majorant, increasing the

number of density evaluations. Notice how at low optical thickness values the original p-series CMF estimator can even suffer from raising the majorant above

a certain point due to the use of a very bad pivot. Our estimator is able to use all the available density evaluations to reduce variance and improve efficiency.
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Fig. 16. A comparison of our biased method to a variant that uses stratified

(“jittered”) sampling. Random-offset equidistant sampling (below) calculates

lower-variance optical thickness estimates, which results in less bias and

variance when applied through the exponential function. Without sampling

the higher orders, both variants result in a relatively small amount of bias.

The numbers are averages over the full image.

weights (or collision probabilities) using a combed lookup. Such

a non-local tracking algorithm would feature lower variance and

could be further improved using endpoint matching and sampled

pivots. However, given that it would still lack the advantages of the

truncated estimators discussed in Section 4.2.1, and the benefits of

our U-statistics approach, we draw this connection primarily for

didactic purposes and completeness.

Alternative strategies for reducing𝑌 -variance. An equidistant sam-

pling comb works well under the assumption that the density has

bounded slope: in this case it can potentially reduce the integration

error to 𝑂(1/𝑀) or less.

For highly discontinuous densities, or densities with a very high

fractal dimension, this might no longer be the case. An alternative

in these extreme cases could be using CP-rotated low discrepancy

blue-noise combs that react less to the spectrum of the integrand.

An example of such a comb can be easily obtained using𝑢 𝑗 = ℓ ·𝜙 · 𝑗 ,
where 𝜙 is the well known golden ratio.

In practice, however, we have found equidistant sampling to

always outperform any other low-discrepancy set we have tried.

This might be related to the observations of Ramamoorthi et al.

[2012].

6.1 Future Work

As briefly discussed in Section 4.6, it would be desirable to have a

scheme for deriving the tuple sizes adaptively when other sources of

variance are present. The superlinear convergence of our estimators

might benefit from drawingmore samples in relevant regions of path

space, and fewer elsewhere; we leave these investigations for future

work. Another potentially related point that deserves attention is

a more thorough investigation of the bias/variance tradeoff of our

biased and unbiased estimators.

There may be scenarios where negative transmittance estimates

are undesired or the sample budget is fixed independent of a ma-

jorant optical depth. What estimator performs best in these cases

remains an open question. Finally, power series estimation of zero-

order probabilities for random media with non-exponential trans-

mission laws, where 𝜇(𝑥 ) is a random variable, is an interesting open

area [Bitterli et al. 2018; d’Eon 2019; Jarabo et al. 2018], and some

steps in this direction using the Master equation for binary mixtures

has already been made [Longo 2002].
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7 CONCLUSION

We presented a novel in-depth variance analysis (Section 3) of exist-

ing unbiased transmittance estimators, revealing weaknesses and

areas for improvement. We then proposed a series of techniques

(Section 4) exploiting these insights, specifically:

• We have presented a novel power series estimator utilizing all

samples efficiently using U-statistics, a recipe for evaluating

the estimator in quadratic time, and a numerically robust,

incremental elementary symmetric means algorithm.

• We have demonstrated how to further reduce variance by

using sampled mean pivots instead of majorant-derived ones;

a development enabled by the U-statistics.

• We have described a combed estimator for evaluating optical

depth using𝑀 rotated equidistant samples and proposed an

affine CV to preserve its superlinear convergence rate.

• We have proposed to alter the BK roulette and make it vastly

more aggressive, enabling us to use larger tuples and attain

even higher overall efficiency.

Since the zeroth-order term of our final power series estimator

is analogous to the classical ray marching solution (with the ad-

dition of our endpoint matching control variate), we refer to the

novel estimator as unbiased ray marching. In our tests, unbiased

ray marching was universally more effective than any of the previ-

ously known unbiased estimators, and often offered several orders

of magnitude lower variance at equal sample count. Moreover, we

have shown that stopping the power series evaluation at the zeroth

order, and effectively getting back to simple ray marching, results in

a low-bias estimator with our tuple size deduction approach. This

biased estimator attains lower MSE than the unbiased estimator,

even at relatively low sample counts, and represents a viable option

for real-time rendering and other applications where unbiasedness

is not crucial.
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A OPTIMALITY OF THE MEAN PIVOT

Earlier, we discussed how non-symmetric power series estimators

benefit from a majorant pivot and how U-statistics changes this

behaviour. With this important difference, we perform a similar

analysis for the pivot as in earlier work (e.g. Georgiev et al. [2019]):

We analyze the sum of the absolute values of the different order

contributions in the Taylor series of 𝑒E[𝑋 ]
with different pivots 𝑝 .

The sum of the absolute values of the contributions from all orders

with pivot 𝑝 is

𝑒𝑝
©«1 +

��E[𝑋 ] − 𝑝
��
+

��E[𝑋 ] − 𝑝
��2

2!

+ · · ·ª®¬ = 𝑒𝑝+|E[𝑋 ]−𝑝 | . (44)

This says that in some sense, it is optimal to use any pivot less than

the expectation, 𝑝 ≤ E[𝑥], as any such pivot minimizes the above

expression. In terms of positive densities, this says that the control

density should be at least as high as the mean density. However, the

control density does not need to be greater than all of the density

samples—there is no need to use a majorant.

However, the picture changes drastically when we take Russian

roulette into account: As noted earlier, moving the pivot closer to −𝜏
implies faster convergence for the Taylor series. This means that we

need to evaluate fewer orders of the power series for good estimates,

which means that we can employ more aggressive Russian roulette.

Interestingly, with a good pivot, even aggressive Russian roulette

will not make efficiency worse: for 𝑁 total evaluations of an estima-

tor 𝑋 , returning the roulette-compensated variable with probability

𝑝 and otherwise zero, the actual number of evaluations is 𝑁𝑝 . The

inverse efficiency of the estimator is thus proportional to

𝑝 Var

[
𝑅𝑋

𝑝

]
= 𝑝

(
E[𝑅2

]E[𝑋 2
]

𝑝2
− E[𝑅]

2 E[𝑋 ]
2

𝑝2

)
= E[𝑋 2

] − 𝑝 E[𝑋 ]
2

= Var[𝑋 ] + (1 − 𝑝)E[𝑋 ]
2,

(45)

where 𝑅 is the random binary choice variable. This says that the

efficiency of the roulette is maximized when E[𝑋 ] = 0, that is, when

we use the theoretical mean pivot. The efficiency of the rouletted

estimator decreases as the pivot moves farther from the real expec-

tation.

Therefore, using an approximate mean pivot allows the use of a

more aggressive roulette.

The resulting lower mean estimation order from more aggressive

roulette means that we now need a smaller number of independent

samples, and we can use our density evaluation budget to make

those samples higher-quality by performing variance reduction

techniques such as stratification or numerical integration rules, as

discussed in Section 4.

B ELEMENTARY SYMMETRIC MEANS

In this appendix we derive the elementary symmetric means formu-

las that lead to Algorithm 1.

Elementary symmetric sums 𝑒𝑘 = 𝑒𝑘 (𝑥1, · · · , 𝑥𝑛) are defined as

𝑒𝑘 =

∑
1≤𝑖1< · · ·<𝑖𝑘 ≤𝑛

𝑥𝑖1 · · · 𝑥𝑖𝑘 , (46)

with 𝑒0 = 1. To distinguish between different numbers of parameters,

in this appendix we denote the elementary sums of 𝑛 variables,

𝑥1, . . . , 𝑥𝑛 , by

𝑒𝑛
𝑘

= 𝑒𝑘 (𝑥1, · · · , 𝑥𝑛), (47)

and elementary symmetric means by

𝑚𝑛
𝑘

=𝑚𝑘 (𝑥1, · · · , 𝑥𝑛) =

𝑒𝑘 (𝑥1, · · · , 𝑥𝑛)(𝑛
𝑘

) . (48)
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A simple derivation leads to a formula for iteratively constructing

elementary symmetric sums:

𝑒𝑛+1

𝑘
=

∑
1≤𝑖1< · · ·<𝑖𝑘 ≤𝑛+1

𝑥𝑖1 · · · 𝑥𝑖𝑘

=

∑
1≤𝑖1< · · ·<𝑖𝑘 ≤𝑛

𝑥𝑖1 · · · 𝑥𝑖𝑘 +

∑
1≤𝑖1< · · ·<𝑖𝑘=𝑛+1

𝑥𝑖1 · · · 𝑥𝑖𝑘

= 𝑒𝑛
𝑘

+

©«
∑

1≤𝑖1< · · ·<𝑖𝑘−1≤𝑛
𝑥𝑖1 · · · 𝑥𝑖𝑘−1

ª®¬𝑥𝑛+1

= 𝑒𝑛
𝑘

+ 𝑒𝑛
𝑘−1

𝑥𝑛+1 .

(49)

Then, by substituting the definition of elementary symmetric

means, we reach the recurrence formula

𝑚𝑛+1

𝑘
=𝑚𝑛

𝑘
+

𝑘

𝑛 + 1

(
𝑚𝑛
𝑘−1

𝑥𝑛+1 −𝑚𝑛𝑘
)
. (50)

Observing the directions of the dependencies in this formula leads

to Algorithm 1.

C EFFICIENCY DERIVATIONS

In this appendix we review known analytic results for the variance

and cost of transmittance estimators as well as present some new

derivations for power series estimators.

C.1 Costs

Tracking estimators. The expected number E[𝑁 ] of optical-depth

estimates for a tracking estimator follows from the mean of the

Poisson distribution, which is simply the rate, E[𝑁 ] = 𝜆ℓ = 𝜏r.

Therefore, for residual ratio tracking with query size𝑀 ,

Cost[𝑇𝑟𝑟𝑡 ] = 𝑀 𝜏r . (51)

Bhanot and Kennedy roulette. Using the continuation probabilities
of the generalized BK estimator (Equation 19) we find the probability

𝑄BK(𝑁 ) of evaluating term 𝑁 to be

𝑄BK(𝑁 ) =

𝑐

𝐾 + 1

𝑐

𝐾 + 2

. . .
𝑐

𝐾 + 𝑁
=

𝑐𝑁−𝐾

𝑁 ! /𝐾 !

, 𝑁 > 𝐾 = ⌊𝑐⌋ , (52)

and 1 otherwise. The expected number of evaluated orders is thus

E[𝑁𝐵𝐾 ] = 𝐾 +

∞∑
𝑁=𝐾+1

𝑐𝑁−𝐾

𝑁 ! /𝐾 !

= 𝐾 +

𝐾 !

𝑐𝐾

(
𝑒𝑐 −

𝐾∑
𝑁=0

𝑐𝑁

𝑁 !

)
. (53)

C.2 Variances

Delta-tracking. The exact variance of delta-tracking is known

[Glasser 1962] and agrees with a derivation for the special case of

𝑛 = 1 and a uniform-medium [Georgiev et al. 2019]

Var[𝑇𝑑𝑡 ] = 𝑒−𝜏 − 𝑒−2𝜏 . (54)

This result is exact for any input, and generalizes [Glasser 1962] to

Johnson’s 𝑛 > 1 estimator (Section 2.3):

Var[𝑇𝐽 ] = 𝑒−2𝜏
(
𝑒
𝜏
𝑛 − 1

)
. (55)

We investigate the efficiency of Johnson’s estimator in the supple-

mentary material.

Residual ratio tracking. The exact variance for residual ratio track-
ing is also known. The rate of the Poisson process follows from the

difference of the known optical depths, 𝜆 = 𝜏 − 𝜏c, which are the

integrals of the upper 𝜇(𝑥) and lower 𝜇c(𝑥) control variates. The

variance is then [Papaspiliopoulos 2011, Equation 4.16]

Var[𝑇𝑟𝑟𝑡 ] = 𝑒−2𝜏+𝜆+
𝑉
𝜆 − 𝑒−2𝜏

, where (56)

𝑉 =

1

(𝑏 − 𝑎)

∫𝑏
𝑎

(
(𝑏 − 𝑎)(𝜇 − 𝜇(𝑥 )

)
2

𝑑𝑥 . (57)

C.2.1 Truncated estimators.

Roulette variance. With uniform density, the negative residual

optical depth 𝑌 is estimated with zero variance and the full variance

of the generalized BK estimator is (see supplemental material)

Var[𝑇𝐵𝐾 ] = 𝑒−2𝜏c

∞∑
𝑗=0

𝑐 𝑗
(
1 − 𝑐

𝑗+𝐾+1

)
(𝐾 + 1)𝑗

(
𝐾∑
𝑛=0

𝑌𝑛

𝑛!

+

𝑗∑
𝑖=1

𝑌𝐾+𝑖

𝑐𝑖𝐾 !

)
2

−𝑇 2 .

Additional derivations. In the supplemental material we provide

three additional variance derivations for BK estimators in the special

case that the pivot is optimal: the variances of generalized BK and U-

BK estimators with fixed expansion (𝐾 > 0, 𝑐 = 0), and the variance

of generalized BK with roulette (𝑐 > 0).

D ENDPOINT MATCHING FORMULAS

Integration with endpoint matching and equidistant combs can

be further simplified. As the order of the samples in a CP-rotated

equidistant comb does not matter, we can write the optical thickness

estimate 𝑋𝑖 of the endpoint-matched volume as

𝑋𝑖 = − ℓ

𝑀

𝑀−1∑
𝑖=0

𝜇★
(
ℓ

𝑀
(𝑢 + 𝑖)

)
, (58)

where 𝑢 is a uniform random number in [0, 1). With Equation 35

this directly simplifies into

𝑋𝑖 = − ℓ

𝑀

𝑀−1∑
𝑖=0

𝜇

(
ℓ

𝑀
(𝑢 + 𝑖)

)
︸                       ︷︷                       ︸

original estimate

− ℓ

𝑀

(
1

2

− 𝑢
) (
𝜇(ℓ) − 𝜇(0)

)
︸                         ︷︷                         ︸

endpoint matching

. (59)

The left-hand-side term is the integral estimate without endpoint

matching, and the right-hand-side is the zero-expectation term from

endpoint matching that often improves the convergence rate.

This reshuffling can cause the resulting integrand to assume

negative values. If non-negativity is a constraint, an alternate option

is to symmetrize the estimator over the interval by using the mean of

mirrored lookups [Buslenko et al. 1966] (p.106). This is equivalent to

blending the interval of scattering material with its reversed copy.
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