
Screen-Space Bias Compensation for
Interactive High-Quality Global Illumination with Virtual Point Lights

Jan Novák Thomas Engelhardt Carsten Dachsbacher ∗

Computer Graphics Group / Karlsruhe Institute of Technology

Clamped

Our technique Screen-Space BC

Figure 1: Our algorithm enables high quality rendering for VPL based methods by restoring the short distance illumination that is usually
clamped to avoid artifacts. By employing our hierarchical integration scheme in screen space, which takes about 27 ms for these images, we
can efficiently compute the missing energy (right image), and obtain results that are comparable to offline renderers at interactive frame rates
(10 fps for the Dragon, and 7.2 fps for the Happy Buddha scene).

Abstract

In this paper we present a method that targets high-quality global
illumination at interactive frame rates. As many techniques in this
context, our method is based on instant radiosity, which represents
the indirect illumination in a scene with a set of virtual point lights,
and therefore enables efficient GPU rendering. Instant radiosity
captures light transport over larger distances well, but it requires
clamping of the point lights’ contribution to avoid bright splotches
on nearby surfaces. By bounding the short distance light transport,
the algorithm removes some energy and thus introduces bias, that is
visible as incorrect darkening near edges and corners. Our method
improves the quality and correctness of the rendered images by re-
moving bias using a hierarchical screen space approach. We show
that the bias compensation can be formulated as a post-processing
step and demonstrate renderings comparable to results from offline
algorithms at interactive speed.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

Keywords: global illumination, instant radiosity, screen space,
bias compensation

1 Introduction

Global illumination algorithms simulate light transport in virtual
scenes to render photorealistic images. However, due to the in-
herent complexity of light transport, causing effects such as inter-
reflections, caustics, and subsurface scattering, many global illu-
mination algorithms build on ray tracing and stochastic sampling,

∗e-mail: {jan.novak,thomas.engelhardt,dachsbacher}@kit.edu

c©ACM, 2011. This is the author’s version of the work. It is
posted here by permission of ACM for your personal use. Not for redis-
tribution. The definitive version will be published in the Proceedings of
the 2011 Symposium on Interactive 3D Graphics and Games.

and are only feasible for offline rendering. Instant Radiosity [Keller
1997], in contrast, is a GPU-friendly method that casts the global
illumination problem onto computing direct illumination from vir-
tual point lights (VPL), and is thus very well suited for interac-
tive applications. The steadily increasing computational power of
GPUs and improvements of the original instant radiosity method,
such as imperfect shadow maps [Ritschel et al. 2008], allow us to
render thousands of VPLs and achieve images of good quality at
interactive speed. However, lighting from VPLs exhibits singular-
ities if the VPLs are close to a surface. These singularities cause
high intensity peaks that appear in the image as distracting bright
splotches. We can remove these artifacts by bounding the contri-
bution of a VPL to surfaces in its proximity. This, unfortunately,
removes energy from the light transport near edges, corners, and
creases, leading to incorrect darkening in these regions.

Kollig et al. [2004] compute a correction term that compensates for
this energy loss. Unfortunately, their method requires tracing many
additional rays through the scene, which is not feasible without spa-
tial index structures and thus difficult in the context of interactive
rendering. The rendering times of their compensation, compared to
that of the bounded solution, are orders of magnitude longer, as the
compensation can essentially degenerate to path tracing that sam-
ples all VPLs at each vertex.

We propose to compute the bias compensation in a GPU-friendly
manner in screen space: as the compensation essentially recom-
putes the missing light transport over short distances, we observe
that most of the required information about nearby surfaces can be
acquired from screen space representation. Our approach is based
on a solid theory obtained from a reformulation of the rendering
equation (Section 3.2). To further accelerate the compensation, we
use a hierarchical approach that reduces the number of arithmetic
and memory operations, and also discuss strategies to suppress arti-
facts due to sparse or missing sampling of surfaces in screen space.
We show several examples demonstrating that our method achieves
comparable results to offline rendering algorithms while achieving
interactive speed on contemporary GPUs.

2 Previous Work

A large body of research in global illumination (GI) exists and even
a brief overview would exceed the scope of this paper. Therefore,
we focus on the most related work here, and we refer the reader
to Dutré et al. [2006] for a comprehensive description of global
illumination algorithms, and to Dachsbacher and Kautz [2009] for
an overview on GI techniques for real-time rendering.

Instant Radiosity Instant radiosity (IR) [Keller 1997] is a widely
used algorithm for approximating GI in interactive rendering. IR is
a bidirectional method that first creates a set of virtual point lights
(VPLs) using random walks that trace light paths starting from
the primary light sources. Direct contribution of these VPLs then
approximates the entire multi-bounce light transport in the scene.
The conceptually simple idea of breaking down GI to point light
sources, combined with shadow mapping (the original work used
shadow volumes), makes this method GPU-friendly, and it has re-
ceived a lot of attention in recent years. The shadow computation
has significant impact on the rendering performance and thus pre-
vious work tried to lower this cost, e.g. by incrementally updat-
ing and reusing shadow maps [Laine et al. 2007], using imperfect
shadow maps [Ritschel et al. 2008], neglecting visibility for indi-
rect light [Dachsbacher and Stamminger 2006], or ray casting ac-
celerated with grids [Grün 2010]. Wald et al. [2003] also used an
IR-based approach in the context of offline rendering.

The main limitation of IR is that it typically can only be used with
diffuse or moderately glossy surfaces [Křivánek et al. 2010], the
reason being that only relatively few paths (several hundreds) are
created and thus the set of all possible light paths is only sparsely
sampled. Increasing the numbers of paths captures more complex
light transport phenomena, but a high number of VPLs requires
different (non-real-time) rendering techniques using hierarchies of
VPLs [Walter et al. 2005].

Screen Space Algorithms Another popular class of rendering
techniques is GI approximation in screen space. These GPU-
friendly techniques are typically used when high performance
needs outweigh quality. Many of them are based on reflective
shadow maps (RSMs) [Dachsbacher and Stamminger 2005]. Sim-
ilar to a standard shadow map, an RSM captures directly lit sur-
faces, but stores additional information, such as position, nor-
mal, and material properties, that are required to compute one-
bounce indirect illumination. Multi-resolution splatting [Nichols
and Wyman 2009] is also based on RSMs computing indirect light-
ing (without visibility) at lower resolution for smooth surfaces, and
more accurately at detailed parts of the image. Image-space ra-
diosity [Nichols et al. 2009] uses a hierarchy for both RSM and
image space. Computing ambient occlusion in image-space (e.g.
see [Bavoil et al. 2008]) is widely used nowadays, and has been ex-
tended by Ritschel et al. [2009b] to account for directional lighting
with colored shadows and indirect illumination from nearby sur-
faces. Micro-rendering [Ritschel et al. 2009a] renders thousands of
tiny frame buffers to compute indirect illumination using a point
representation of the scene, however, targeting high-quality render-
ing and interactive speed.

3 Global Illumination with Instant Radiosity

The rendering equation [Kajiya 1986] describes the light transport
in a scene, where the light leaving the surface at point y towards
point x is the sum of emitted and reflected light:

L(x←y)=Le(x←y)+

∫
A

fr(x←y←z)G(y↔z)V (y↔z)L(y←z)dA.

The reflected light is computed by the reflection integral
that convolves the incoming light from all surfaces, z, to-
wards y with the BRDF fr(x←y←z), the geometry term
G(y↔z) = cos+θy cos+θz/ ‖y−z‖2, and the binary visibility
function V (y↔z), which is one for mutually visible points and zero
otherwise.

In the following, we will use the convenient operator notation of
Arvo et al. [1994] to derive our method. The transport operator T
represents the reflection integral:

(TL)(x←y) =

∫
A

fr(x←y←z)G(y↔z)V (y↔z)L(y←z)dA,

thus the rendering equation can be written as: L = Le + TL.
Recursively expanding this leads to the Neumann series, which for-
mulates the light incident at a surface as the sum over light that has
been reflected n-times:

L =

∞∑
n=0

TnLe

3.1 Instant Radiosity and Bias Compensation

Computing a solution to the rendering equation, e.g. using path
tracing, is typically costly due to the inherent recursive nature of
the light transport. In order to accelerate the computation, instant
radiosity [Keller 1997] approximates global illumination using a
sparse set of precomputed VPLs. The algorithm starts by comput-
ing (quasi-)random paths from primary light sources and creating a
VPL at every surface location visited by a path. The direct lighting
due to all VPLs then accounts for the indirect illumination in the
scene. In terms of the operator notation, instant radiosity represents
all indirect illumination with VPLs (L̂) and replaces all but the first
two terms of the Neumann series:

L = Le︸︷︷︸
emission

+ TLe︸︷︷︸
direct illum.

+ TL̂.︸︷︷︸
indirect illum.

(1)

One of the main problems of this approach is that lighting from
VPLs exhibits a singularity in the geometry termG(x↔y) resulting
in high intensity peaks when a shading point is close to a VPL. This
leads to distracting artifacts usually seen as bright splotches in the
rendered image. They are typically avoided by bounding the geom-
etry term to an arbitrary bound b: Gb(x↔y) = min(G(x↔y), b),
resulting in a bounded transport operator Tb. Bounding, however,
removes energy from the light transport and thus introduces bias.

Kollig et al. [2004] describe a bias compensation technique within
the context of ray tracing. For each shading point, they compute a
correction term by performing a localized final gathering to com-
pensate for the energy loss due to clamping the VPL’s contribu-
tion. Even though they search only within a close proximity of
the shading point (the domain where clamping occurs), they need
to recompute the incident light at nearby surfaces to illuminate the
current shading point. As clamping can potentially occur also dur-
ing the compensation step, the algorithm is recursive and quickly
degenerates to distributed ray tracing. A more efficient technique,
which creates additional light sources within the bounding region of
the shading point, has been recently presented in [Davidovič et al.
2010, to appear], however, their method is still too costly to be ap-
plicable in interactive rendering.

3.2 Efficient Compensation using Residual Transport

In the following, we will reformulate the bias compensation in such
a way that it does not require recomputing the incident illumination
for compensation. To this end, we express the energy difference
between the unbounded and bounded transport operators using a
new residual operator Tr = T−Tb.

1 R1

0 00
0 0 0 0 0
00 0 0 0 1R

0 0 0 R R 1
R1 R R R R 1
1 1 1 R 1 R 1

0 0

0 R 1 1
0 R R R

R 1

RR1 R R R R R R R
111 1 R R R R R 1
1 R R R R 1

0
1

1
R

R R R 1

Stop refining
contribution is negligible

MIP level K MIP level K-1 Number of samples
840

0

Bounding region

a) b) c) d) e)

Adaptive sampling in screen space

Image
plane

Eye

Shading point
Sample

Figure 2: We compute the bias compensation by adaptively applying the residual operator in screen space and projecting individual samples
back into world space (a). We first estimate a bounding region (b) that contains all surfaces with possible non-zero contribution, and then,
using a hierarchical traversal, evaluate the contribution of individual neighboring samples (c) and (d). Samples spanning discontinuities or
subtending a large projected solid angle are refined (R), until their contribution can be estimated accurately (1), or drops to zero (0). The
total number of processed samples for each pixel is for the Crytek Sponza scene shown in (e).

Similarly to Tb, the residual operator Tr differs from T only in
the geometry term: Gr(x↔y) = max(G(x↔y) − b, 0). From the
previous equation, it is obvious that the unbiased transport can be
expressed as T = Tr +Tb, allowing us to reformulate the indirect
illumination term in Equation 1 using the new operators:

L = Le +TLe +TbL̂+TrL̂

We observe that Tr also suffers from singularities when being ap-
plied to indirect illumination represented by VPLs (L̂). To derive
our new bias compensation technique, we remove the source of
singularities (L̂) and replace it by a general reflected illumination
(L − Le) that is not approximated by point light sources. Concep-
tually, the equation remains the same, the only difference is that Tr

is now integrating reflected light instead of using VPLs:

L = Le +TLe +TbL̂+Tr(L− Le) (2)

By recursively expanding Equation 2 we obtain our novel unbiased
formulation of the rendering equation for IR:

L = Le +

∞∑
i=0

Ti
r(TLe +TbL̂) (3)

This means that we can compute the unbiased solution as an infi-
nite sum of residual operators that are recursively applied to direct
illumination and clamped indirect illumination. That is, we can
approximate GI using VPLs with clamping, and afterwards com-
pensate the bias using only this information. The first term of the
sum represents the direct and the clamped indirect illumination. Ev-
ery further summand represents the (clamped) compensation for the
clamped contribution of the previous step. As clamping can occur
at each iteration, the results will be unbiased only for infinite sums.

In practice, we will only evaluate a finite number of iterations. The
error εN introduced by considering only the first N iterations can
be expressed as a sum over all omitted higher order terms, or even
more concisely as εN =TN+1

r (TLe + TL̂). Notice that the er-
ror measure uses the complete transport operator T for the VPL
lighting, therefore no further compensation is necessary. An im-
portant observation is that the energy gain due to the compensation
is (N+1)-times convolved with the BRDF, and therefore dropping
exponentially with increasing N . For practical applications, this
translates into choosing N such that the visible bias is removed. In
our scenes we used 1 to 3 iterations, which yielded nearly indistin-
guishable results from unbiased reference solutions.

Using our reformulation, we derive a new rendering algorithm with
bias compensation that consists of two major steps:

1. We first compute direct and clamped indirect illumination of
each shading point by applying T to light from primary light
sources and Tb to illumination from VPLs, respectively.

2. Next, we apply the residual operator iteratively N -times to
compensate for the clamped contribution.

Instead of storing shading points over all surfaces, we will use a
screen space approach: we compute illumination for visible sur-
faces only, and also use exclusively these surfaces to compensate
for the bias. We detail the use of our compensation in screen space
in the next section.

4 Screen Space Bias Compensation
In this section we describe how to transform our novel formulation
of bias compensation into an efficient screen space method, which
we denote as screen space bias compensation (SSBC). This is nec-
essary, as the computational expense of compensating using Kollig
et al.’s method [Kollig and Keller 2004] typically exceeds the ren-
dering time of the clamped solution by orders of magnitude and
is thus not feasible for interactive rendering. Bias compensation in
screen space has two major advantages: we can exploit the observa-
tions from Section 3.2 and apply the residual transport operator as
a post-process that operates on the illumination sampled in screen
space. Furthermore, we can easily find all surfaces that potentially
contribute energy to the compensation, as these have to be nearby
in world space, and thus also in screen space.

4.1 Integration in Screen Space

The transport operators, including Tr , can be formulated as inte-
grals over surfaces. Computing an approximation to Tr in screen
space means that we replace the integral by a sum over a finite num-
ber of pixels (we discuss how to handle the inherent limitations of
screen space approaches in Section 4.3). For every pixel we obtain
its position zi and normal ni from a G-buffer of the rendered im-
age, and compute the surface area Ai, that the pixel represents in
world space, using screen-space derivatives. For a shading point y
we sum over M pixels and get:

TrL̂ ≈
M∑
i=1

fr(x←y←zi)Gr(y↔zi)V (y↔zi)L(y←zi)Ai.

As previously mentioned, only surfaces nearby y contribute to the
compensation – otherwise the geometry term Gr(y↔zi) becomes
zero. This has two consequences: first, we can estimate the ra-
dius of this region in screen space and restrict the sum to pixels
therein. Second, we observe that nearby surfaces are rarely oc-
cluded and can thus omit the visibility function, as also proposed
by Arikan et al. [2005].

To restrict the sum to nearby surfaces, we first estimate the spheri-
cal bounding region in world space that contains surfaces contribut-

Direct Illumination Screen Space
Indirect Illumination

MIP Hierarchy

VPL Indirect Illum.

Final Image

Illumination

Screen Space
Bias Compensation

+

U
ps

am
pl

in
g

B
ila

te
ra

l b
lu

r

+

Figure 3: Our SSBC takes a multi-resolution image of direct and clamped indirect illumination, and the hierarchical G-buffer as input. The
compensation result is upsampled and optionally blurred, and then added to the direct and clamped illumination yielding the final image.

ing to the compensation. A conservative estimation, which does
not rely on geometric information in advance, defines the bound-
ing region only based on the distance (assuming the two cosine
terms in Gb to be 1) and the bound b of Gb. The radius of the
bounding sphere in world space is then r = 1/

√
b, and can be

transformed to screen space, e.g. for a perspective projection as
rs = r/(tan(δ/2) ‖x− y‖), where δ is the field of view. Note
that rs depends on the distance from the camera and for closer y the
screen space radius becomes bigger spanning more pixels. Since
the number of pixels lying inside the bounding bounding region
can exceed several thousands (see Figure 4.b), we derive a hierar-
chical integration scheme that greatly helps to achieve interactive
performance.

4.2 Hierarchical Integration

The goal of the hierarchical integration in screen space is to com-
pute the contribution from smooth or more distant (yet still in
the bounding region) surfaces using less pixel samples. Figure 2
demonstrates the general idea of adaptively sampling the integra-
tion domain and refining where the information is inaccurate. For
this we compute a mip-map chain for the G-buffer, which contains
averaged positions, normals, and material properties, summed pixel
areas, and illumination computed from the bounded light transport,
i.e. the color of the pixels. We also compute a discontinuity buffer
(and a mip-map chain thereof), similarly to Nichols et al. [2009], to
avoid integrating over sharp edges and depth discontinuities.

When integrating the surfaces’ contributions, we start on the coars-
est mip level (typically a resolution of 642 for an image resolution
of 10242), and determine whether the computation using this sam-
ple is accurate enough, or if we have to refine and proceed to the
next mip level. In order to avoid spatial and temporal artifacts in
dynamic scenes, we refine the integration if:

1. The projected solid angle of a surface corresponding to a sam-
ple exceeds a given threshold (typically 0.08 steradians) be-
cause it is too large or too close to the shading point y.

2. The current sample spans a discontinuity. Then the position,
normal, and area at the coarser mip level do not represent the
original geometry correctly.

If at least one of the criteria is met, we omit the sample and refine
by recursively integrating over the four corresponding pixels at the
next finer level. The second criterion can cause a lot of refinement
in areas with negligible contribution, e.g. distant surfaces. There-
fore, we only refine at discontinuities when the projected solid angle
is higher than a user specified threshold (≈ 0.04). This significantly
improves the performance without introducing noticeable artifacts,
as it is only effective for samples with low contribution.

6 0 100500 75

+ + +

Tori (1531 VPLs, 106 ms)

Stairs Scene (1486 VPLs, 156 ms)

Indire
ct i

llu
m.

 b
yVPLs

Relative execution time

Dire
ct i

llu
m.

1s
t SSBC

2n
d SSBC

Crytek Sponza (1962 VPLs, 332 ms)

4K

3K

2K

1K

0
2 43 51

Number of processed samples

Number of levels in the hierarchya) b)

Happy Buddha
Stairs Scene
Tori

Figure 4: a) The average number of samples per pixel used for bias
compensation is highly dependent on the number of mip levels used
for the hierarchical G-buffer. b) Relative time spent on the different
tasks: the cost of 2 compensation steps is moderate compared to
that of computing illumination from VPLs. The number of VPLs
and the total rendering time is given in parentheses.

4.3 Avoiding Artifacts in Screen-Space Integration

There are inherent problems that are common to all screen space
approaches. Information about surfaces can either be missing com-
pletely, or sampled too sparsely when surfaces are seen from graz-
ing angles. Hidden surfaces can be revealed using depth peeling
or multi-fragment rendering, but trying to acquire and use all this
information makes a screen space approach more complicated and
less elegant. As our goal is a simple-to-apply algorithm, we fo-
cus on the case where we have information on the frontmost sur-
faces only. In screen space, the information is rather inaccurate for
surfaces that are nearly perpendicular to the view direction. Pix-
els where these surfaces are seen represent a large area in world
space with just a few samples in the G-buffer, even on the finest
mip level. This can result in overestimated contributions to the
bias compensation, and thus to brighter areas in the image (please
see the accompanying video). This brightening would sometimes
be more distracting than the non-clamped contribution of a nearby
VPL, therefore, we decay the contribution of pixels that have the
angle between the surface normal and the viewing direction greater
than 80 degrees by a quadratic falloff.

5 Implementation Details
We implemented our technique in DirectX 11 and all steps of our
bias compensation are executed on the GPU. The only exception are
the random walks distributing the VPLs, which are computed on the
CPU. Note that this is never the bottleneck, as we only generate up
to a few thousands of VPLs.

a) Rendering without BC b) with BC akin [Kollig and Keller 2004] d) BC akin [Kollig and Keller 2004] e) 3 SSBC stepsc) with 3 SSBC steps

Figure 5: Comparison of our SSBC to a ground-truth solution: (a) offline rendering with clamped indirect illumination without bias com-
pensation (20 min), and (b) with bias compensation [Kollig and Keller 2004] (additional 10.9 hours). (c) shows the result with three SSBC
steps (i.e. three iterations in Equation 3). The energy recovered from both compensation methods is shown in (d) and (e), respectively.

During rendering the illumination from the VPLs is computed us-
ing imperfect shadow maps [Ritschel et al. 2008]. The bias com-
pensation is implemented in a compute shader, which enables more
efficient handling of the hierarchical refinement via a stack placed
in the group-shared memory. The compute shader takes a mip map
chain of the G-buffer storing position, normal, area, BRDF, and
illumination (direct and clamped VPL contribution) as input. Op-
tionally, we apply an edge-preserving bilateral gaussian blur to the
compensation result to avoid blocky artifacts that can appear when
using the hierarchical approach with very few samples. When using
multiple compensation steps, we always have to use the illumina-
tion buffer from the previous step and thus have to update its mip
maps as well. Figure 3 shows the workflow of our method.

As the indirect illumination usually exhibits smooth gradations
only, we can increase the performance – without noticeable impact
on visual quality – by computing the indirect illumination and bias
compensation at half resolution. We then use bilateral upsampling
as in [Ritschel et al. 2009a] and compute these two components
only at full resolution where the upsampling failed.

6 Results
In this section we compare the quality of our results to an imple-
mentation of the unbiased instant radiosity algorithm [Kollig and
Keller 2004], analyze the rendering performance, and discuss dif-
ferent settings. All renderings have been computed using an ATI
Radeon HD 5870 running on an Intel Core i7 860 with 2.8 GHz
with 8 GB of RAM. Figure 4a shows the dependency of the num-
ber of screen space samples required for the compensation on the
number of mip levels of the G-buffer. Without the hierarchical
approach, the algorithm gathers the illumination from up to four
thousand samples for every pixel. This number quickly decreases
as we use more levels of the hierarchy. Figure 4b reports the rel-
ative time spent on the individual parts of the pipeline. Here we
always used hierarchies with 6 levels computing the compensation
for 1024 × 768 images and performing two compensation steps
(green and yellow).

In Figure 5 we compare the quality of the SSBC. For a faithful
comparison we replaced the shadow maps in the GPU renderer with
ray traced shadows in this figure. The ground-truth rendering took
about 11.2 hours to produce results with an acceptable noise level.
Our bias compensation obtains very similar results at interactive
frame rates (3 SSBC steps at highest quality settings take 550 ms).

Figure 6 demonstrates SSBC for three scenes and illustrates the
differences between one and two bias compensation steps, and pro-
vides a comparison to clamped and reference solutions. We observe
that one compensation step is often sufficient for diffuse surfaces,
while a second step still contributes noticeably on glossy surfaces.

7 Conclusions
In this paper we presented a novel method for interactive render-
ing of high-quality global illumination based on virtual point light
methods. We show that bias compensation can be formulated as a
post-processing step allowing for efficient screen space approxima-
tions. Our method improves the quality and correctness of VPL-
based methods by recovering the clamped energy using a hierarchi-
cal screen space approach, whereas previous approaches, operat-
ing in world space, require ray casting and are orders of magnitude
slower. The relative time required for our compensation is only
a fraction of the time spent on illuminating the scene with VPLs.

In order to overcome the artifacts stemming from the incomplete in-
formation in screen space, our method could be combined with any
technique revealing information on hidden surfaces, such as depth
peeling, scene voxelization, or surfel injection.These improvements
trade speed for quality and might even be suitable for accelerating
high-quality bias compensation in offline renderers.

References

ARIKAN, O., FORSYTH, D. A., AND O’BRIEN, J. F. 2005. Fast
and detailed approximate global illumination by irradiance de-
composition. ACM Trans. on Graphics (Proc. of SIGGRAPH)
24, 3, 1108–1114.

ARVO, J., TORRANCE, K., AND SMITS, B. 1994. A framework
for the analysis of error in global illumination algorithms. In
SIGGRAPH ’94, 75–84.

BAVOIL, L., SAINZ, M., AND DIMITROV, R., 2008. Image-space
horizon-based ambient occlusion. ACM SIGGRAPH 2008 talks.

DACHSBACHER, C., AND KAUTZ, J. 2009. Real-time global il-
lumination for dynamic scenes. In SIGGRAPH ’09: ACM SIG-
GRAPH 2009 Courses, 1–217.

DACHSBACHER, C., AND STAMMINGER, M. 2005. Reflective
shadow maps. In Proc. of ACM SIGGRAPH Symposium on In-
teractive 3D Graphics and Games, 203–213.

DACHSBACHER, C., AND STAMMINGER, M. 2006. Splatting in-
direct illumination. In Proc. of ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games, 93–100.

DAVIDOVIČ, T., KŘIVÁNEK, J., HAŠAN, M., SLUSALLEK, P.,
AND BALA, K. 2010, to appear. Combining global and lo-
cal lights for high-rank illumination effects. In ACM Trans. on
Graphics (Proc. of SIGGRAPH Asia).

DUTRÉ, P., BALA, K., AND BEKAERT, P. 2006. Advanced Global
Illumination. AK Peters.

3.8 fps
3.4 fps

3.0 fps
16.4 fps

12.1 fps
9.3 fps

10.3 fps
8.2 fps

6.4 fps
C

la
m

pe
d

G
PU

R
ef

er
en

ce
 IG

I
N

o B
C

C
la

m
pe

d
G

PU
R

ef
er

en
ce

 IG
I

1-step SSB
C

2-step SSB
C

N
o B

C
C

la
m

pe
d

G
PU

2-step Screen Space Bias Compensation Difference betwen clamped and compensated GPU rendering
R

ef
er

en
ce

 IG
I

1-step SSB
C

2-step SSB
C

N
o B

C
1-step SSB

C
2-step SSB

C

Figure 6: Three of our test scenes for which we show a clamped GPU and a reference CPU solution (left column), and our technique with
2 compensation steps (middle columns). The insets on the right detail parts, where the compensation contributes significantly. Note that a
single compensation step is typically sufficient for diffuse surfaces, while glossy surfaces (e.g. the dragon) benefit from more steps. Each
compensation step takes approximately 27 ms for an image resolution of 1024× 768.

GRÜN, H., 2010. Direct3d 11 indirect illumination. Game Devel-
opers Conference.

KAJIYA, J. 1986. The rendering equation. In Computer Graphics
(Proc. of SIGGRAPH ’86), 143–150.

KELLER, A. 1997. Instant radiosity. In SIGGRAPH ’97, 49–56.

KOLLIG, T., AND KELLER, A. 2004. Illumination in the pres-
ence of weak singularities. Monte Carlo and Quasi-Monte Carlo
methods.

KŘIVÁNEK, J., FERWERDA, J. A., AND BALA, K. 2010. Effects
of global illumination approximations on material appearance.
ACM Trans. on Graphics (Proc. of SIGGRAPH) 29, 4, 1–10.

LAINE, S., SARANSAARI, H., KONTKANEN, J., LEHTINEN, J.,
AND AILA, T. 2007. Incremental instant radiosity for real-time
indirect illumination. In Proc. of the Eurographics Symposium
on Rendering, 277–286.

NICHOLS, G., AND WYMAN, C. 2009. Multiresolution splatting
for indirect illumination. In Proc. of ACM SIGGRAPH Sympo-
sium on Interactive 3D Graphics and Games, 83–90.

NICHOLS, G., SHOPF, J., AND WYMAN, C. 2009. Hierarchical
image-space radiosity for interactive global illumination. Com-
puter Graphics Forum 28, 4, 1141–1149.

RITSCHEL, T., GROSCH, T., KIM, M. H., SEIDEL, H.-P.,
DACHSBACHER, C., AND KAUTZ, J. 2008. Imperfect shadow
maps for efficient computation of indirect illumination. ACM
Trans. on Graphics (Proc. of SIGGRAPH Asia) 27, 5.

RITSCHEL, T., ENGELHARDT, T., GROSCH, T., SEIDEL, H.-P.,
KAUTZ, J., AND DACHSBACHER, C. 2009. Micro-rendering
for scalable, parallel final gathering. ACM Trans. Graph. (Proc.
SIGGRAPH Asia 2009) 28, 5.

RITSCHEL, T., GROSCH, T., AND SEIDEL, H.-P. 2009. Approxi-
mating dynamic global illumination in image space. In Proc. of
ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games, 75–82.

WALD, I., BENTHIN, C., AND SLUSALLEK, P. 2003. Interac-
tive Global Illumination in Complex and Highly Occluded Envi-
ronments. In Proc. of Eurographics Symposium on Rendering,
74–81.

WALTER, B., FERNANDEZ, S., ARBREE, A., BALA, K.,
DONIKIAN, M., AND GREENBERG, D. P. 2005. Lightcuts:
A scalable approach to illumination. ACM Trans. on Graphics
(Proc. of SIGGRAPH) 24, 3, 1098–1107.

