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Figure 1. A cloudscape rendered with a combination of our spectral and decomposition tracking techniques, which gracefully handle chromatic media and
reduce collision coe�icient evaluations. The insets on the right were computed in equal time, with our method yielding 3.5× lower MSE than delta tracking.

We present two novel unbiased techniques for sampling free paths in het-

erogeneous participating media. Our decomposition tracking accelerates

free-path construction by splitting the medium into a control component

and a residual component and sampling each of them separately. To min-

imize expensive evaluations of spatially varying collision coe�cients, we

de�ne the control component to allow constructing free paths in closed form.

The residual heterogeneous component is then homogenized by adding a

�ctitious medium and handled using weighted delta tracking, which removes

the need for computing strict bounds of the extinction function. Our second

contribution, spectral tracking, enables e�cient light transport simulation in

chromatic media. We modify free-path distributions to minimize the �uc-

tuation of path throughputs and thereby reduce the estimation variance.

To demonstrate the correctness of our algorithms, we derive them directly
from the radiative transfer equation by extending the integral formulation of

null-collision algorithms recently developed in reactor physics. This math-

ematical framework, which we thoroughly review, encompasses existing

trackers and postulates an entire family of new estimators for solving trans-

port problems; our algorithms are examples of such. We analyze the proposed

methods in canonical settings and on production scenes, and compare to

the current state of the art in simulating light transport in heterogeneous

participating media.
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1 INTRODUCTION
Accurate and e�cient simulation of radiative transfer in participat-

ing media is essential in many domains, such as nuclear reactor

design, medical imaging, scienti�c visualization, and realistic image

synthesis. The animation and visual e�ects industry, in particular,

employs rich and complex volumetric structures (such as smoke, �re,

or clouds) and translucent materials (such as marble, wax, or skin)

to create aesthetically pleasing visuals and convey natural depth

and scale cues. Simulating radiative transfer in such materials, how-

ever, presents a signi�cant computational challenge. Monte Carlo

methods based on path tracing—a popular tool for solving transport

problems—require constructing a massive number of light paths.

When the appearance of the medium is dominated by high-order

scattering, each such light path can consist of up to thousands of

scattering events. Modeling these scattering events—by means of

sampling free paths—is the main contributor to the cost of synthe-

sizing an image, and the main focus of this paper.
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In continuous homogeneous media, stochastically constructing

free paths is relatively cheap as we can obtain distance samples

analytically. The general case of heterogeneous media, however,

requires a speci�c approach—delta tracking—that homogenizes the

volume parameters by adding a �ctitious medium that interacts

with light only formally. The properties of the �ctitious medium

are de�ned such that, upon a collision, light scatters forward with

its direction and radiant intensity unaltered. While the inclusion

of these null collisions is of no use for the principal description of

radiative transfer, it does enable formulating Monte Carlo methods

for sampling free paths. The main drawback of delta tracking is

the large number of expensive lookups of spatially varying volume

parameters.

We propose to accelerate delta tracking by decomposing the

scattering medium into a homogeneous control component and a

heterogeneous residual component. Individual free paths, or their

segments, are then constructed using only one component. If the

control component is used, the calculation is fully analytic and

we avoid expensive memory lookups or procedural evaluations,

keeping the cost of constructing paths low (see Figure 2). A similar

decomposition was previously explored in the context of transmit-

tance estimation [Novák et al. 2014]; we investigate the application

of this concept to free-path sampling.

We also address the challenges of e�ciently handling wavelength-

dependent collision coe�cients. We analyze several vectorized vari-

ants of weighted tracking and propose a history-aware strategy for

setting collision probabilities to prevent geometric growth of the

path throughput.

In order to demonstrate that our techniques are unbiased, we

derive them directly from the radiative transfer equation (RTE) us-

ing the integral formulation of null-collision algorithms recently

proposed by Galtier et al. [2013]. This mathematical framework

de�nes an entire, largely unexplored family of Monte Carlo meth-

ods for solving radiative transfer in heterogeneous media, opening

opportunities for developing new practical algorithms of which

our decomposition and spectral trackers are examples. Such im-

provements would be di�cult to achieve, if not impossible, when

postulating the algorithms using physical interpretations. Instead,

we derive our trackers directly from the RTE, obviating the need for

more involved mathematical proofs [Coleman 1968; Miller 1967].

In what follows, we review several existing trackers for construct-

ing free paths (Section 2), rederive Galtier et al.’s reformulation of

the RTE (Section 3), and discuss con�gurations that lead to a num-

ber of known, previously published algorithms. We then introduce

the concept of decomposing a scattering medium to sample free

paths more e�ciently (Section 4). For didactic purposes, we start

with an intuitive, albeit constrained solution, which we later gen-

eralize by direct derivation from the RTE. The resulting algorithm

reduces evaluations of spatially varying coe�cients by obtaining

some of the free-path samples analytically. We further improve the

algorithm using a complementary approach for e�ciently handling

wavelength-dependent collision coe�cients (Section 5). We ana-

lyze individual techniques in isolation and combined together in

canonical settings and in realistic rendering scenarios (Section 6),

demonstrating multiple facets of improved performance over exist-

ing methods.

free path in residual component
free path in control component
null collision with lookup
real collision with lookup
real collision without lookup

Figure 2. Our decomposition tracking constructs some of the free paths
(yellow) in a heterogeneous medium without evaluating spatially varying
collision coe�icients. The portion of yellow segments represents the savings
in memory lookups. The resulting light paths are identical to delta tracking.

2 EXISTING TRACKING ALGORITHMS
The propagation of light in a participating medium is governed

by the radiative transfer equation [Chandrasekhar 1960], which

relates the change in radiative energy to collision coe�cients of the

medium: the absorption coe�cient µa (x), the scattering coe�cient

µs (x), and their sum, the extinction coe�cient µt (x) = µa (x) + µs (x).
Each of these coe�cients quanti�es the distance density (with phys-

ical units of inverse length) of the corresponding physical process.

A key tool for numerically solving the RTE is a stochastic con-

struction of light particles’ trajectories that consist of free paths, i.e.

straight �ight paths between subsequent collisions with the medium.

Unbiased estimators that rely on constructing such paths can be

classi�ed as either analog methods, that directly model the actual

physical process, or non-analog methods, that bias the free-path

distribution and reweight samples to produce unbiased results with

lower variance or without the constraints of the analog process.

Closed-form Tracking. In simple volumes, e.g. those with constant,

polynomial, or exponentially varying extinction, free paths can be

sampled using the inverse transform sampling, �rst applied to Monte

Carlo integration by Ulam [Eckhardt 1987]. We de�ne a probability

density function (PDF) by normalizing the transmittance function

T (t ) = exp

(
−

∫ t
0
µt (xt )dt

)
along a ray parameterized by t . If the

corresponding cumulative distribution function (CDF) is analytically

invertible, then the free-path distance t ′ can be sampled analytically

using a single random number ζ and a closed-form expression,

e.g. t ′ = − log(1 − ζ )/µt for homogeneous volumes. In cases when

the CDF is not invertible, but an analytic solution for the optical

thickness τ (t ) =
∫ t

0
µt (xt )dt still exists, one can �nd the solution

iteratively using Newton’s method [Brown and Martin 2003].

Regular Tracking. If the medium consists of piecewise homoge-

neous regions, the free path can be found by visiting boundaries

along the ray and integrating optical thickness of individual re-

gions until its negative exponentiated value reaches a stochastically

chosen value of transmittance. This procedure, known as regular

tracking [Sutton et al. 1999] or surface tracking [Leppänen 2010],

quickly becomes expensive as we need to identify all boundaries

between individual regions along the ray. Unless they can be dis-

covered quickly, as with grids [Amanatides and Woo 1987] or oc-

trees [Hubert-Tremblay et al. 2006], the method is relatively slow,

especially when free paths cross many boundaries.
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Ray Marching. A straightforward approach to reduce the cost of

regular tracking is to ignore the boundaries and march along the ray

with a �xed stride [Perlin and Ho�ert 1989]. However, ignoring the

true heterogeneity and assuming a constant extinction along each

step leads to bias, which persists even if the marching is randomly

jittered [Raab et al. 2008]. The bias is characterized by Jensen’s

inequality [Jensen 1906], exp(E[−τ ]) ≤ E[exp(−τ )], and can be

reduced by taking smaller stride steps (ideally conforming to the

Nyquist frequency), but this signi�cantly reduces performance.

Delta Tracking. Unbiased sampling of free paths in heterogeneous

volumes can be achieved using delta tracking. The method is based

on von Neumann’s [1951] rejection sampling and strictly adheres

to the physical process, hence matching the classi�cation of ana-

log estimators. It was independently developed in neutron trans-

port [Bertini 1963; Woodcock et al. 1965; Zerby et al. 1961] and in

plasma physics [Skullerud 1968], and is also known as Woodcock

tracking, the null-collision algorithm, or pseudo scattering.

The main idea of delta tracking is to introduce a �ctitious medium,

represented by the null-collision coe�cient µn (x), that homogenizes

the total collision density in order to enable analytic sampling of free

paths. The shortening of free paths due to increasing the combined

collision coe�cient is counteracted by rejecting some collisions

and continuing the free �ight forward. The rejected collisions—

referred to as null collisions—occur with probability equal to the

ratio of the null-collision coe�cient to the combined (real + null)

collision coe�cient. The �ctitious medium can be interpreted as

being perfectly transparent and thereby having no e�ect on light

transport; its sole purpose is to allow analytic distance sampling.

The correctness of the method was rigorously proven using two

di�erent mathematical approaches [Coleman 1968; Miller 1967].

Since null collisions incur computational overhead, several ap-

proaches were developed to lower the null-collision coe�cient, typi-

cally by partitioning the medium, e.g. using kd-trees [Yue et al. 2010,

2011] or grids [Szirmay-Kalos et al. 2011], and optimizing the the

amount of added �ctitious medium for each region independently.

Our decomposition tracking is complementary to these approaches

and further reduces computational cost by omitting queries of µt (x).

Weighted Tracking. Another way to reduce null collisions is to al-

low the combined coe�cient to occasionally underestimate the real

extinction. To remain unbiased, the resulting non-analog estimator

must appropriately reweight samples that step into regions with

negative values of the null-collision coe�cient [Carter et al. 1972;

Cramer 1978]. Various weighting schemes were also proposed to

arti�cially increase collision rates in measurement regions [Spanier

and Gelbard 1969; Steen 1966], or to ensure that free paths reach a

certain distance in deep-penetration problems [Cramer 1978; Mor-

gan and Kotlyar 2015] and transmittance calculations [Novák et al.

2014] by replacing the rejection with a statistical weight. Eymet et

al. [2013] investigated the bene�ts of combining weighted tracking

with energy partitioning [Shamsundar et al. 1973].

While reasoning about negative extinctions using physical argu-

ments is di�cult, a purely mathematical view [Galtier et al. 2013]

reveals an entire family of weighted algorithms that all lead to the

correct solution; we review this integral framework in Section 3.

Multi-volume Tracking. Until now we have only considered scat-

tering volumes that consist of a single, spatially varying medium.

For materials where absorption can occur due to multiple transitions,

Galtier et al. [2016] proposed to reduce the tracking cost by proba-

bilistically evaluating only a single term in the sum. We combine

this concept with the control/residual decomposition, which was

proposed for transmittance estimation [Novák et al. 2014; Szirmay-

Kalos et al. 2011]. Thanks to its multiplicative nature, transmittance

can be calculated as the product of per-component estimates, reduc-

ing variance if the decomposition is chosen carefully. Our applica-

tion to free-path sampling (Section 4) relies on a di�erent theoretical

justi�cation, and, instead of reducing sample variance, we reduce

the per-sample cost.

Multi-wavelength Tracking. Collision coe�cients that vary spec-

trally require special handling. Raab et al. [2008] recommended

avoiding wavelength-dependent extinction coe�cients when pos-

sible, and otherwise tracing separate light paths for each wave-

length [Eymet et al. 2013]. In the latter case, the tracking cost grows

linearly with the number of wavelengths.

Tracing multiple wavelengths together can increase e�ciency

and reduce distracting color noise. Wilkie et al. [2014] described a

technique in which a single “hero” wavelength is chosen for path

construction, secondary wavelengths are carried along, and their

(potentially high) variance is kept low using multiple importance

sampling (MIS) [Veach 1997]. A similar approach was used by Chi-

ang et al. [2016] who derive wavelength selection probabilities from

per-wavelength throughput and single-scattering albedo. These

techniques work well in homogeneous media. The hero-wavelength

method can be extended to heterogeneous volumes, however, it

employs delta tracking and ray marching for calculating a single

free-path sample and the proposed implementation is biased. In

contrast, our multi-wavelength tracking (Section 5) is unbiased and

does not require explicit selection of a hero wavelength. We also

discuss situations that permit combining multiple path-construction

strategies, that employ an unbiased rejection-based tracker, using

MIS without explicitly evaluating or approximating distance PDFs.

3 RADIATIVE TRANSFER WITH NULL COLLISIONS
In this section, we derive a version of the RTE that includes null

collisions. We then extend it by incorporating the work of Galtier

et al. [2013] to obtain the integral formulation of null-collision

algorithms. Finally, we elaborate on speci�c con�gurations that

yield delta tracking and weighted delta tracking and discuss other

existing trackers in appendices. Readers familiar with the framework

may skip directly to Section 4.

3.1 Integral Formulation of RTE with Null Collisions
The radiative transfer equation in its di�erential form

(ω · ∇)L(x,ω) = − µt (x)L(x,ω) + µa (x)Le (x,ω)

+ µs (x)
∫
S2

fp (ω, ω̄)L(x, ω̄) dω̄ (1)

describes the equilibrium radiance L(x,ω) parameterized by point

x and direction of travel ω. The �rst term on the right side of Equa-

tion (1) expresses the losses due to absorption and out-scattering.
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The gains due to radiant emission Le (x,ω) and inscattering are

described in the second and third term, respectively. The phase func-

tion fp (ω, ω̄) quanti�es the directional density of scattered light.

In order to incorporate null collisions, we can formally write the

transport due to the null-collision coe�cient µn (x) as

−µn (x)L(x,ω) + µn (x)
∫
S2

δ (ω − ω̄)L(x, ω̄) dω̄ = 0. (2)

The losses due to the �rst term equal to the null-collided radiance

that is “inscattered” using the Dirac delta function. Since the two

terms cancel out, we can add them to the RTE without changing its

validity, yielding [Cramer 1978]

(ω · ∇)L(x,ω) = − [µt (x) + µn (x)]L(x,ω) + µa (x)Le (x,ω)

+ µs (x)
∫
S2

fp (ω, ω̄)L(x, ω̄) dω̄

+ µn (x)
∫
S2

δ (ω − ω̄)L(x, ω̄) dω̄ . (3)

We will refer to the term on the last line as the null-collided radi-
ance. By integrating both sides spatially along ω, introducing the

shorthand notation Ls (x,ω) =
∫
S2

fp (ω, ω̄)L(x, ω̄)dω̄, and solving

the Dirac integral we obtain the integral form of the RTE including

null collisions:

L(x,ω) =
∫ ∞

0

exp

(
−

∫ t

0

µt (xs ) + µn (xs ) ds

) [
µa (xt )Le (xt ,ω)

+ µs (xt )Ls (xt ,ω) + µn (xt )L(xt ,ω)
]
dt , (4)

where xt = x − tω and xs = x − sω. In this formulation, the change

in transmittance (the exponential term) due to null collisions is

always compensated for by the null-collided radiance: if µn (x) is

positive, the reduction in transmittance is counteracted by adding

the positive null-collided radiance. If µn (x) is negative, then the

surplus of radiance due to overestimating transmittance is removed

by adding the negative null-collided radiance.

Since negative values of collision coe�cients are unde�ned in the

physical sense, we must abandon a purely physical interpretation

of Equation (4) here. The equation is still a valid RTE reformulation

though, as null collisions have no impact on light transport.

3.2 Integral Formulation of Tracking Methods
In order to provide an algorithmic recipe for tracking algorithms in

heterogeneous media, Galtier et al. [2013] introduce a number of

identities that allow for translating Equation (4) directly into code

for solving it. We loosely follow their derivation for absorptive-only

media and extend it to include the process of scattering [Eymet et al.

2013]. We �rst de�ne the probability density function (PDF)

p (t ) = µ̄ (xt ) exp

(
−

∫ t

0

µ̄ (xs ) ds

)
, (5)

which will be used to sample free-path lengths t ∈ (0,∞) along

the source-seeking ray (x, −ω) in closed form. We refer to µ̄ (x) =
µt (x) + µn (x) as the free-path-sampling coe�cient, which combines

the extinction and the null-collision coe�cients. Substituting the

scattering null-collision absorption/emission

x0

x1 xj xj+1 xk

tj

ω0

ω1 ωj ωk

w (X) = µs (x1 )
µ̄ (x1 )Ps (x1 )

· · ·
µn (xj )

µ̄ (xj )Pn (xj )
· · ·

µa (xk )Le (xk ,ωk )
µ̄ (xk )Pa (xk )

Figure 3. A light path X = {x0 . . . xk } in a heterogeneous medium consists
of absorption, sca�ering, and null-collision events that determine the Monte
Carlo score w (X).

PDF for the exponential term in Equation (4) yields

L(x,ω) =
∫ ∞

0

p (t )
[ µa (xt )
µ̄ (xt )

Le (xt ,ω) +
µs (xt )
µ̄ (xt )

Ls (xt ,ω)

+
µn (xt )
µ̄ (xt )

L(xt ,ω)
]
dt . (6)

Next, we introduce probabilities Pa (x), Ps (x), and Pn (x) to allow

probabilistically evaluating each of the emission, inscattering, and

null-collided radiance terms, respectively. To distinguish the indi-

vidual free-path segments that are built to numerically solve the

recursive RTE, we denote x0 ≡ x and xj+1 = xj − tjωj :

L(xj ,ωj ) =
∫ ∞

0

p (tj )

[
Pa (xj+1)

µa (xj+1)Le (xj+1,ωj )

µ̄ (xj+1)Pa (xj+1)

+Ps (xj+1)
µs (xj+1)Ls (xj+1,ωj )

µ̄ (xj+1)Ps (xj+1)

+Pn (xj+1)
µn (xj+1)L(xj+1,ωj )

µ̄ (xj+1)Pn (xj+1)

]
dtj . (7)

Figure 3 shows a light path consisting of a number of free-path

segments between di�erent types of collision events, indexed by j.
Similarly to Galtier et al. [2013], we formalize the notion of prob-

abilistic testing using the Heaviside function, which returns 1 if the

condition is true, and 0 otherwise. A probabilistic evaluation of a

random variable X can be written as the product

PX =

∫
1

0

H [y < P]X dy, (8)

where P is the probability of evaluating X . Introducing H and

substituting x+ = xj+1 for readability, we obtain

L(xj ,ωj ) =
∫ ∞

0

p (tj )

×

[ ∫
1

0

H [ξe < Pa (x+)]
µa (x+)

µ̄ (x+)Pa (x+)
Le (x+,ωj ) dξe

+

∫
1

0

H [ξs < Ps (x+)]
µs (x+)

µ̄ (x+)Ps (x+)
Ls (x+,ωj ) dξs

+

∫
1

0

H [ξn < Pn (x+)]
µn (x+)

µ̄ (x+)Pn (x+)
L(x+,ωj ) dξn

]
dtj . (9)

By replacing the integrals with Monte Carlo estimators, this version

of the RTE can be directly translated into a multitude of recursive al-

gorithms that all yield the correct solution regardless of the choice of

µn (x) and probabilities Pa (x), Ps (x), and Pn (x). While these degrees

of freedom may be uninteresting from a purely theoretical point

of view, their presence is of high interest for numerical methods
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Algorithm 1. Delta tracking and weighted delta tracking. The combined free-
path-sampling coe�icient µ̄ is assumed to be constant along the ray (x, −ω ).
ζ and ξ represent uniformly distributed random numbers.

1 function DeltaTracking(x, ω )

2 while true do
3 t ← − ln(1−ζ )

µ̄
4 x← x − t × ω
5 if ξ <

µa (x)
µ̄ then

6 return Le (x, ω )

7 else if ξ < 1−
µn (x)
µ̄ then

8 ω ← sample ∝ fp (ω )
9 else

10 continue

1 functionWgtDeltaTracking(x, ω )

2 w ← 1

3 while true do
4 t ← − ln(1−ζ )

µ̄
5 x← x − t × ω
6 if ξ < Pa (x) then
7 returnw× µa (x)Le (x,ω )

µ̄Pa(x)
8 else if ξ < 1 − Pn (x) then
9 ω ← sample ∝ fp (ω )

10 w ← w × µs (x)
µ̄Ps (x)

11 else
12 w ← w × µn (x)

µ̄Pn (x)

as di�erent choices lead to vastly di�erent convergence character-

istics and algorithmic constraints. Next, we review two existing

techniques deriving them directly from Equation (9).

3.3 Delta Tracking
In standard delta tracking, the probabilities for evaluating the emit-

ted, inscattered, and null-collided radiance are strictly proportional

to the relative value of the corresponding coe�cient:

Pa (x) =
µa (x)
µ̄ (x)

, Ps (x) =
µs (x)
µ̄ (x)

, Pn (x) =
µn (x)
µ̄ (x)

. (10)

In order for these probabilities to be mathematically valid (i.e. in

[0, 1]), the free-path-sampling coe�cient µ̄ (x) is set to a majorant
of µt (x), typically represented by a piecewise constant function.

These probabilities perfectly cancel the fractions �rst introduced in

Equation (7), leaving “only” the unweighted radiance functions to

be evaluated. To this end, most implementations employ branching
to evaluate only one of the radiance functions and thus avoid a

geometric growth of function calls. Since the probabilities sum to

one, and exactly one decision test is true at any time, Equation (9)

simpli�es to

L(xj ,ωj ) =
∫ ∞

0

p (tj )

∫
1

0

H [ξ < Pa (x+)]Le (x+,ωj )

+H [Pa (x+) < ξ < 1 − Pn (y)]Ls (x+,ωj )

+H [1 − Pn (x+) < ξ ]L(x+,ωj ) dξ dtj . (11)

Figure 1 (left) shows a direct translation of Equation (11) into the

code of a Monte Carlo estimator. First, a random distance t is sam-

pled from p (tj ) to estimate the outer integral. Then a uniformly

distributed random variable ξ selects one of the if (line 5), else if
(line 7), and else (line 9) branches that correspond to the three

Heaviside functions in the inner integral.

3.4 Weighted Delta Tracking
One way to remove the burden of �nding tight majorants on µt (x)
is to introduce a weighted Monte Carlo scheme [Carter et al. 1972;

Cramer 1978; Galtier et al. 2013]. Notice that Equation (6) is still

valid even if the free-path-sampling coe�cient is not a majorant, i.e.

µ̄ (x) < µt (x), as long as we provide mathematically valid de�nitions

of the branching probabilities. Freeing themselves from a physical
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Figure 4. Weighted delta tracking in a medium with bounding and non-
bounding free-path-sampling coe�icient. The stretching of the free-path
probability density in (b) is compensated for by weighting the samples. The
red line, illustrating the weight, starts diverging from 1 as we enter regions
where µ̄ < µt (x). The density × weight product is in both cases the same,
but the statistical error is higher in (b) due to the very noisy weight; the red
band illustrates its standard deviation. The dashed line shows the average
number of null-collisions, which is reduced in (b) thanks to the lower µ̄ .

interpretation, Cramer [1978] and Galtier et al. [2013] exploit this

observation and propose to set

Pa (x) =
µa (x)

µt (x) + |µn (x) |
, (12)

Ps (x) =
µs (x)

µt (x) + |µn (x) |
, (13)

Pn (x) =
|µn (x) |

µt (x) + |µn (x) |
. (14)

The stretching of the free-path PDF is compensated for by properly

reweighting the radiance functions; see Figure 4 for an illustration.

Without restricting ourselves to a particular de�nition of the branch-

ing probabilities, we can express the Monte Carlo score w (X) of

path sample X as

w (X) = Le (xk ,ωk )wa (xk )
k−1∏
j=1

w?(xj ), (15)

w?(xj ) =
µ?(xj )

µ̄ (xj )P?(xj )
, (16)

whereX = {x0 . . . xk },k is the index of the �rst absorption collision—

the termination point—and w? is a local collision weight with the

subscript ? representing a, s , or n, depending on whether the corre-

sponding event was an absorptive, scattering, or null collision. The

product of all collision weights is referred to as the path throughput.

Algorithm 1 (right) shows a pseudocode that implements a branch-

ing version of Equation (9) and computes w (X) progressively.
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Table 1. Collision coe�icients used by the decomposition trackers.

Symbol & Value Description

µa (x) ∈ [0,∞) absorption coef. of original volume

µs (x) ∈ [0,∞) scattering coef. of original volume

µt (x) = µa (x) + µs (x) extinction coef. of original volume

µca ∈ [0,∞) absorption coef. of control volume

µcs ∈ [0,∞) scattering coef. of control volume

µct = µ
c
a + µ

c
s extinction coef. of control volume

µra (x) = µa (x) − µca absorption coef. of residual volume

µrs (x) = µs (x) − µcs scattering coef. of residual volume

µrt (x) = µt (x) − µ
c
t extinction coef. of residual volume

µ̄ ∈ (µct ,∞) free-path-sampling coe�cient

µn (x) = µ̄ − µct − µ
r
t (x) null-collision coe�cient

Discussion. Not having to de�ne the free-path-sampling coe�-

cient as a majorant of µt (x) eases the search for an analytically

integrable function µ̄ (x) that closely approximates µt (x). However,

numerous analyses [Carter et al. 1972; Cramer 1978; Galtier et al.

2013; Novák et al. 2014] demonstrate that the variance of the path

throughput increases rapidly with non-bounding µ̄ (x). In fact, the

throughput will alternate sign whenever a null collision occurs

and µn (x) is negative. It is thus still important to seek free-path-

sampling coe�cients that bound µt (x) in most parts of the volume.

Having the ability to occasionally violate this rule is nonetheless

very practical.

Other Estimators. In Appendix A we discuss the con�guration

that yields the free-path-sampling technique brie�y discussed by

Novák et al. [2014]. Numerous transmittance estimators employing

various forms of weighting [Cramer 1978; Novák et al. 2014] can

also be formalized using the aforementioned integral framework,

as long as the underlying equations are adapted to calculate only

transmittance; we show how to do this in Appendix B.

4 DECOMPOSITION TRACKING
In this section, we present a volume-decomposition technique for

accelerating free-path sampling. Our approach is motivated by the

bene�ts of applying such decomposition to transmittance estima-

tion [Novák et al. 2014], where it lowers variance and reduces mem-

ory accesses due to handling a part of the volume—the control

component—analytically.

Similarly to previous work, we decompose the original volume

into a homogeneous control component {µca , µ
c
s } and the remaining

heterogeneous residual component {µra (x), µrs (x)}; see Table 1 for

symbol overview and Figure 5 for an illustration.

In the next two sections, we describe how to generate free-path

samples using the two components. We begin with an intuitive,

albeit limited approach (Section 4.1) that cannot incorporate sample

weighting, to later derive a more �exible formulation (Section 4.2)

using the integral framework from Section 3.

ray

(a) Original medium (b) Control medium (c) Residual medium

Figure 5. We decompose a medium (a) into a homogeneous control compo-
nent (b) and a heterogeneous residual component (c). A free-path sample
in the original medium can then be obtained by taking the minimum of
free-path samples in individual components.

4.1 Analog Decomposition Tracking
We observe that a free-path sample in the original medium can be

obtained by taking the minimum of free-path samples in individual

components. This concept is illustrated in Figure 5 and can be un-

derstood intuitively by considering the �rst collision of a ray with

two separate sets of particles. If we intersect the union of the two

sets, only the collision at the �rst, or minimum, free-�ight distance

from either set actually matters. This is similar to �nding the nearest

hit in surface rendering. We will now prove rigorously that free-

path samples obtained by taking the minimum follow the desired

distribution. An extended version of this proof can be found in the

supplemental material.

Theorem 1. Let non-negative extinction coe�cients µA (x), µB (x)
be combined to µC (x) = µA (x) + µB (x). Let A, B, and C be indepen-
dent random variables distributed according to the following CDF
FX (t ) = 1 − exp

(
−

∫ t
0
µX (xs )ds

)
with X ∈ {A,B,C}. The CDFs ofC

and min(A,B) are identical.

Proof. Consider a random variable D = min(A,B). According

to basic probability theory, the CDF of D reads

FD (t ) = FA (t ) + FB (t ) − FA (t )FB (t ). (17)

Substituting the CDFs of A and B into the previous relation and

using TX (t ) = exp(−
∫ t

0
µX (xs )ds ), we obtain

FD (t ) = [1 −TA (t )] + [1 −TB (t )] − [1 −TA (t )] [1 −TB (t )]

= 1 −TA (t )TB (t ). (18)

Since TA (t ) and TB (t ) are exponential functions and integration is

a linear operator, Equation (18) simpli�es to

FD (t ) = 1 −TA (t )TB (t ) = 1 −TC (t ) = FC (t ).

Hence we have demonstrated that the CDF of C is indeed equal to

the CDF of min(A,B). �

The combination is therefore very elegant—we create free-path

samples for each component and simply take the minimum of them

to arrive at the combined estimate. However, the proof assumesA, B,

andC to be distributed according to transmittance, i.e. they obey an

exponential distribution parameterized by negative optical thickness.

As such, we can use the aforementioned min-based combination

only with analog trackers; weighted trackers that produce arbitrary

weighted distributions must be combined di�erently.
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Algorithm 2. Analog decomposition tracking. ζ , ψ , and ξ are uniformly
distributed random numbers.

1 function AnalogDecompositionTracking(x, ω )

2 while true do
3 t c ← − ln(1−ζ )

µct
4 t r ← 0

5 while true do
6 t r ← t r − ln(1−ψ )

µ̄−µct
7 if t r > t c then
8 x← x − t c × ω
9 if ξ <

µca (x)
µct

then

10 return Le (x, ω )
11 else
12 ω ← sample ∝ fp (ω )
13 break
14 else
15 if ξ <

µra (x)
µ̄−µct

then

16 x← x − t r × ω
17 return Le (x, ω )

18 else if ξ < 1 −
µn (x)
µ̄−µct

then

19 x← x − t r × ω
20 ω ← sample ∝ fp (ω )
21 break

The analog decomposition tracking requires both the residual ex-

tinction coe�cient µrt (x) and the null-collision coe�cient µn (x) to

be always non-negative. The control extinction µct thus needs to be

a minorant of µt (x) to ensure µrt (x)≥ 0, and the free-path-sampling

coe�cient of the residual component µ̄r must be a majorant of µrt (x)
to ensure µn (x)≥ 0.

E�cient Implementation. Given that the decomposition requires

drawing two free-path samples, it may appear less e�cient than

delta tracking in the original volume. However, a simple short-

circuit optimization can save computation and most of the expensive

extinction queries. We �rst analytically sample the free path in the

control component. Then we use delta tracking to construct a free

path in the residual component, but as soon as the delta tracker

exceeds the control free path, we stop and return the control sample.

This avoids the lookups needed to �nish the free-path sampling in

the residual component. Algorithm 2 presents the algorithm of the

described approach. The technique can also be adjusted to combine

distance samples from multiple separate superimposed volumes,

without having all of these volumes in memory at the same time,

facilitating easy integration into streaming renderers.

Limitations. In addition to requiring the majorant, the main draw-

back of the analog method is that it also needs a minorant for de-

composing the medium. The best performance requires both bounds

to be tight. As mentioned before, computing tight bounds is chal-

lenging in practice—sometimes nearly impossible if the function

is de�ned procedurally. Removing this requirement would make

the decomposition tracking a lot more practical. Furthermore, since

the analog decomposition relies on delta tracking, it can handle

only a single wavelength (discussed in Section 5), and cannot easily

accommodate additional information to further reduce variance. We

overcome these limitations in the next section.

Algorithm 3. Weighted decomposition tracking. F is a CDF and the assign-
ment operator← returns the assigned value.

1 functionWeightedDecompositionTracking(x, ω )

2 w ← 1

3 while true do
4 t ← − ln(1−ζ )

µ̄
5 x← x − t × ω
6 F ← 0

7 if ξ < (F ← F + P ca (x)) then

8 returnw× µca
µ̄Pca(x)

×Le (x, ω )

9 else if ξ < (F ← F + P cs (x)) then
10 ω ← sample ∝ fp (ω )

11 w ← w × µcs
µ̄Pcs (x)

12 else if ξ < (F ← F + P ra (x)) then

13 returnw× µra (x)
µ̄Pra(x)

×Le (x, ω )

14 else if ξ < (F ← F + P rs (x)) then
15 ω ← sample ∝ fp (ω )

16 w ← w × µrs (x)
µ̄Prs (x)

17 else
18 w ← w × µn (x)

µ̄Pn (x)

4.2 Weighted Decomposition Tracking
In this section, we derive a weighted version of the decomposi-

tion tracker that can handle non-bounding control extinctions and

free-path-sampling coe�cients, and enables e�cient handling of

chromatic collision coe�cients—both of which are problematic with

the analog version. The RTE with null collisions from Equation (4)

can be rewritten for a medium with k absorptive and/or scattering

components [Galtier et al. 2016]:

L(x,ω) =
∫ ∞

0

exp
*.
,
−

∫ t

0

k∑
i=1

µit (xs ) + µn (xs ) ds+/
-

×

[ k∑
i=1

µia (xt )Le (xt ,ω) +
k∑
i=1

µis (xt )Ls (xt ,ω)

+ µn (xt )L(xt ,ω)
]
dt , (19)

where the superscript i is used to index individual components.

Substituting in p (t ) and incorporating probabilities and their proba-

bilistic evaluation from Section 3.2 yields

L(xj ,ωj ) =
∫ ∞

0

p (tj )

×

[ k∑
i=1

∫
1

0

H [ξ ie <P
i
a (x+)]

µia (x+)
µ̄ (x+)P ia (x+)

Le (x+,ωj )dξ ie

+

k∑
i=1

∫
1

0

H [ξ is <P
i
s (x+)]

µis (x+)
µ̄ (x+)P is (x+)

Ls (x+,ωj )dξ is

+

∫
1

0

H [ξn <Pn (x+)]
µn (x+)

µ̄ (x+)Pn (x+)
L(x+,ωj )dξn

]
dtj . (20)

In our case, Equation (20) can be simpli�ed since we have only the

two previously introduced components, the control and the residual.
We thus have exactly �ve terms to evaluate: emitted and inscattered

radiance of the control component, emitted and inscattered radiance

of the residual component, and the null-collided radiance.
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Control Probabilities. We shall now de�ne the probabilities of

evaluating each of the �ve terms. Similarly to previous tracking

methods, we enable branching by forcing the probabilities to sum

to 1 and relate them to the respective coe�cients to keep the local

collision weights close to 1. Most importantly though, we de�ne

the probabilities of sampling the control component using only

the constant coe�cients, avoiding possibly expensive lookups of

spatially varying coe�cients:

Pca = PcPa |c =
µct
µ̄

µca
µct
=
µca
µ̄
, (21)

Pcs = PcPs |c =
µct
µ̄

µcs
µct
=
µcs
µ̄
. (22)

In words, the probability of sampling emission or inscattering us-

ing the control component is set to the product of the marginal

probability Pc = µ
c
t /µ̄ of choosing the control component, and the

conditional probability of choosing the respective term. Note that

the de�nition of Pc requires µ̄ > µct :

Residual and Null-collision Probabilities. The residual and null-

collision components are handled analogously, except that we em-

ploy absolute values (as in Section 3.4) to handle situations when

either of the components is negative:

Pra (x) =
(
1 −

µct
µ̄

)
|µra (x) |

|µra (x) | + |µrs (x) | + |µn (x) |
, (23)

Prs (x) =
(
1 −

µct
µ̄

)
|µrs (x) |

|µra (x) | + |µrs (x) | + |µn (x) |
, (24)

Pn (x) =
(
1 −

µct
µ̄

)
|µn (x) |

|µra (x) | + |µrs (x) | + |µn (x) |
. (25)

The �rst term always represents the marginal probability of not
sampling the control component. The second term then de�nes the

conditional probability of selecting the residual absorption, resid-

ual scattering, and null collision. The algorithmic realization of

weighted decomposition tracking is shown in Algorithm 3.

The control probabilities, as de�ned in Equations (21) and (22),

always cancel out with the fractions in Equation (20). Taking one

of the two control branches therefore does not change the path

throughput. This is also the case for the other branches when all of

the residual and null coe�cients are positive; otherwise, the path

throughput is adjusted to account for negative values. Unlike the

analog tracker, the weighted version allows handling chromatic

coe�cients, which we describe in Section 5.

4.3 Analysis & Discussion
In the analog approach, the residual component is sampled using a

much lower free-path-sampling coe�cient than in the case of the

original volume. Delta tracking on the residual component thus

performs longer steps, which, given that we stop the tracker as soon

as it exceeds the control free path, reduces the number of lookups

of spatially-varying coe�cients; see Figure 6 for a visualization.

Despite the weighted formulation using a di�erent procedure for

constructing the free path, it produces identical lookup statistics as

the analog version—the statistics stem from the parameters of the

volume, not the procedure itself.
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Figure 6. Number of extinction lookups required without and with decom-
position in two media with high and low degree of heterogeneity. The middle
and bo�om rows depict free-path densities visualizing the portions of free-
path samples according to the number of lookups they performed. The
bo�om row represents both analog and weighted decomposition tracking.
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Figure 8. For media shown in column (a), we visualize the absolute cost of our weighted-decomposition tracking in column (b), the relative cost of our weighted
decomposition tracking w.r.t. delta tracking (ρ = Ndcmp/Ndelta) in column (c), the mean path throughput w (X) a�er the first real collision in column (d), and
the variance of w (X) in column (e).

Relative Cost. Denoting the number of spatially-varying extinc-

tion lookups performed by our decomposition tracker N
dcmp

, and

the number of lookups performed by delta tracker in the original

volume N
delta

, we can de�ne the relative cost of decomposition

tracking to be ρ = N
dcmp
/N

delta
= 1 − µct /µ̄. This relation, which

holds only when the control extinction µct ∈ [0,min(µt (x))], i.e.

µct is a minorant of µt (x), is depicted in Figure 7(b) by the straight

purple line in interval [0,min(µt (x))]. When µct > min(µt (x)), the

relative cost increases to eventually surpass 1, i.e. the decomposi-

tion tracking becomes more expensive than delta tracking. This is

to be expected as the control medium at that point signi�cantly

overestimates the density of the original medium.

Mean and Variance of w (X). The statistics in Figure 7 were col-

lected by invoking the tracker multiple times and recording, in

addition to the cost, the path throughput after the �rst real collision.

The orange and yellow curves depict the mean and the variance of

the path throughput, respectively. Because the tracker is unbiased,

the mean of the path throughput w (X) at the �rst collision (over all

paths) is always 1. Furthermore, if µct ∈ [0,min(µt (x))], then the

collision weight w? is always 1 and the variance of w (X) is thus

zero.
∗

Similarly to the case of the relative cost, the tracker becomes

ine�cient when µct > min(µt (x)), in which case the variance of

w (X) increases rapidly.

Optimal Con�guration. In Figure 8, we further study the cost and

the path throughput as a function of distance (horizontal axis) and

the value of control extinction µct (vertical axis). The absolute cost

N
dcmp

in column (b) is minimized when µct equals the local extinc-

tion coe�cient µt (x). This is also the situation in which decomposi-

tion tracking brings the largest cost savings over delta tracking, as

can be seen in column (c) that visualizes ρ. In the same con�guration,

however, the throughputs tends to have signi�cantly more extreme

∗
Note that zero variance of the path throughput does not imply zero variance in

actual estimation problems, where the randomness of the path’s termination point can

contribute signi�cantly to the estimation variance.

values than elsewhere, and often above 1. Paths undergoing several

collisions with such a con�guration will tend to su�er from geomet-

ric growth of the throughput. This explains the steep increase of

variance (yellow curve) in Figure 7(b) when µct > min(µt (x)).
Based on these experiments, and the plots in Figure 7, we con-

clude that the best performance is achieved by setting the control

extinction to the tight lower bound of the extinction function, i.e.

µct = min(µt (x)). However, having the option of overestimating

min(µt (x)) and still converging to the correct solution is one of the

main advantages of the weighted decomposition tracker over the

analog version.

It is also worth noting that as the residual part reduces to 0, the

performance of decomposition tracking approaches that of closed-

form tracking with the relative number of lookups approaching 0,

i.e. ρ → 0. As the control part reduces to 0, the performance of

the algorithm approaches that of delta tracking with ρ → 1. The

decomposition tracking thus bridges the performance gap between

closed-form tracking and delta tracking, with the weighted variant

allowing arbitrary values of µct and µ̄ to be handled at the expense

of increased cost and weight variance.

Numerical Equivalence with Delta Tracking. Either form of de-

composition tracking can be be used as a drop-in replacement for

delta tracking. In fact, the weighted decomposition tracking can

produce path samples that are identical to delta tracking (just at a

lower cost). Both trackers (c.f. Algorithms 1 and 3) draw the same

pair of random numbers ζ and ξ . In both cases ζ is used to sample

a tentative distance, and ξ is used to select an interaction type. As

long as ζ and ξ stem from the same random-number sequences, the

free-path-sampling coe�cients are the same, and the interaction

types are ordered analogously in both implementations (which we

omit in the pseudocode for readability), both delta tracking and

decomposition tracking produce identical results.
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5 SPECTRAL TRACKING
As described in Section 3, and illustrated in Figure 4, weighted track-

ing can produce correct results even if the distribution of distance

samples does not obey Beer’s law: the bias in the distribution is

counteracted by properly reweighting the samples. We leverage this

ability to e�ciently handle spectrally resolved collision coe�cients.

We de�ne a single distribution for sampling collisions and coun-

teract the discrepancy between this distribution and the true, per-

wavelength free-path distribution by reweighting. We invoke the

tracker only once for all wavelengths and, at each collision, we

compute a spectrally resolved collision weight. The weight can be

expressed using a spectral basis or simply as a vector of Nλ wave-

lengths: we use three primaries—red, green, and blue (RGB)—in all

experiments but our formulas and proofs hold for arbitrary counts.

Continuous spectra can be handled by carrying a discrete set of

wavelengths per-path, e.g. by using the wavelength selection and

bundling techniques presented by Wilkie et al. [2014]. Algorithm 4

shows a vectorized weighted delta tracking that was used to sample

(weighted) free paths in a medium with independently varying RGB

extinction coe�cients in Figure 9.

Free-path-sampling Coe�cient. In order to keep the variance of

the estimation low, we should ideally set the free-path-sampling

coe�cient µ̄ (x) to bound the maximum value of µt (x, λ) across all

wavelengths λ, or as close to this value as possible, as discussed in

Section 3.4.

5.1 Collision Probabilities
The variance of the spectral tracker largely depends on the vari-

ance of the spectrally resolved collision weights. The weight will

inevitably deviate from 1 as we cannot set the collision probabilities

to cancel out the µ?(x, λ)/µ̄ (x) fractions for all wavelengths simulta-

neously. The worst situations occur when P?(x) � |µ?(x, λ)/µ̄ (x) |,
for which |w?(x, λ) | � 1. Should there be multiple such collisions,

the path throughput would grow geometrically for that wavelength.

However, by carefully setting the collision probabilities, we can

bound the local collision weight and also the throughput of the path.

5.1.1 Maximum- and Average-based Probabilities. We can bound

the magnitude of the local collision weight |w?(x, λ) | for all λ by

deriving the probabilities from maxima over all wavelengths:

Pa (x) = max

λ
( |µa (x, λ) |) c−1, (26)

Ps (x) = max

λ
( |µs (x, λ) |) c−1, (27)

Pn (x) = max

λ
( |µn (x, λ) |) c−1, (28)

c = max

λ
( |µa (x, λ) |) +max

λ
( |µs (x, λ) |) +max

λ
( |µn (x, λ) |), (29)

where c is a normalization constant. When all collision coe�cients

are non-negative, it can be shown that the proposed probabilities

keep the local collision weight at or below the number of collision
types, i.e. w?(x, λ) ≤ 3, for all λ regardless of the total number of

wavelengths Nλ being traced; see the supplementary material for a

proof. In contrast, replacing the max() function by avg() would keep

the local collision weight at or below the number of wavelengths Nλ .

Algorithm 4. Spectral tracking. The hat (̂) denotes vectorized quantities
that are handled using element-wise multiplication and division.

1 function SpectralTracking(x, ω )

2 ŵ ← (1, . . . , 1)Nλ
3 while true do
4 t ← − ln(1−ζ )

µ̄
5 x← x − t × ω
6 if ξ < Pa (x) then
7 return ŵ ◦ µ̂a (x)

µ̄Pa(x)
◦L̂e (x, ω )

8 else if ξ < 1 − Pn (x) then
9 ω ← sample ∝ fp (ω )

10 ŵ ← ŵ × µ̂s (x)
µ̄Ps (x)

11 else
12 ŵ ← ŵ × µ̂n (x)

µ̄Pn (x)

5.1.2 Incorporating Path History. Despite being bounded, the

local collision weights can still exceed 1. Multiplying a sequence

of them together may therefore result in a geometric growth of

the path throughput. We can suppress this trend by incorporating

the path throughput—path history—into the average-based colli-

sion probabilities. At each j-th vertex of the path, we include the

path throughput w (Xj−1, λ) =
∏j−1

i=1
w?(xi , λ), of the already built

subpath Xj−1. The probabilities then become:

Pa (xj ) = avg

λ
( |µa (xj , λ)w (Xj−1, λ) |) c

−1, (30)

Ps (xj ) = avg

λ
( |µs (xj , λ)w (Xj−1, λ) |) c

−1, (31)

Pn (xj ) = avg

λ
( |µn (xj , λ)w (Xj−1, λ) |) c

−1, (32)

c = avg

λ
( |µa (xj , λ)w (Xj−1, λ) |)

+ avg

λ
( |µs (xj , λ)w (Xj−1, λ) |)

+ avg

λ
( |µn (xj , λ)w (Xj−1, λ) |). (33)

With these probabilities the sum of the throughputs over all wave-

lengths is always equal to the number of wavelengths Nλ , as long

as µ̄ (xj ) is a majorant; a proof can be found in the supplemental

material. This property implies that the average of the throughputs

over all of the wavelengths is always—for all path vertices—equal

to 1, and that the maximum throughput for any wavelength is Nλ .

The geometric growth of the path throughput during successive

collisions is thereby prevented.

Incorporating the path history into maximum-based probabilities

only slows down the growth but does not limit the throughput.

Discussion. In practice, these probabilities reduce the magnitude

of undesired color noise and avoid bright chromatic outliers (“�re-

�ies”). The ability to keep the average throughput at 1 is analogous

to delta tracking, where one wavelength is selected randomly and

the throughput divided by the selection probability, which amounts

to multiplying by Nλ . In fact, in the extreme case of completely un-

correlated chromatic coe�cients, our technique gracefully regresses

to naive (weighted) delta tracking and automatically settles on trac-

ing only one particular wavelength at a time. When this occurs,

µ̄ (xj ) can be reduced to bound only the one relevant wavelength.
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(f) Naive delta

Figure 9. Comparison of four variants of our spectral tracking (b)-(e), described in Section 5.1, and naive delta tracking that handles each wavelength
separately (f) in a perfectly forward-sca�ering, non-absorptive medium with spectrally and spatially varying µs (x, λ) (a). The top row visualizes the mean path
throughput with ±1 standard deviation band for each wavelength along the line of travel. The bo�om row shows noise exemplars produced by each technique.

In the other extreme, when the extinction coe�cient is achro-

matic, our technique produces the same noise as standard delta

tracking, provided that the latter used only one simulation for all

wavelengths. In between these extremes, our technique provides

advantages of both techniques, automatically and robustly bridging

the gap between the “one-wavelength-at-a-time” and “one-tracking-

for-all-wavelengths” variants of delta tracking.

5.1.3 Reduced Termination Rates. If the medium is non-emissive,
we can further reduce the throughput if desired by not simulating

absorption collisions and redistributing the absorption probability

among the other two collision types. We simply set Pa (xj ) = 0,

remove the corresponding term from c , and recompute Ps (xj ) and

Pn (xj ). Since Ps (xj ) and Pn (xj ), which appear in denominators

in Equation (20), are increased, the throughput upon a scattering

or null-collision reduces. While disabling absorption increases the

computational cost—we need to simulate longer paths—it can reduce

variance, and the magnitude of outliers if µ̄ does not bound µt (x).

5.2 Spectral and Decomposition Tracking
There are numerous ways in which the decomposition technique

from Section 4 can be applied to spectral tracking. In our implemen-

tation, we opted for the following straightforward approach:

• set µ̄ to bound the maximum value of µt (x, λ) across all

wavelengths λ,

• set each component of µca and µcs to the minimum value of

µa (x, λ) and µs (x, λ), respectively, across all wavelengths,

• set the control probabilities to vectorized versions of Equa-

tions (21) and (22), and

• use Equations (30), (31), and (32), modi�ed to account only

for the residual component, to set residual probabilities.

If a control component is sampled, the local collision weight is

(1, . . . , 1)Nλ . When a residual component is sampled, the desirable

properties a�orded by the probability schemes presented in Sec-

tions 5.1.1 and 5.1.2 still apply.

In summary, to e�ciently handle chromatic media, we vectorize

the collision coe�cients, decompose the medium into an achromatic

control component and a chromatic residual component, derive

the collision probabilities from the maxima or averages across all

wavelengths, incorporate the path history, and, if the medium is

non-emissive, reduce termination rates in favor of decreasing the

growth of path-throughput weights.
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(b) Histogram of avg. path throughputs

Figure 10. Distributions of the first sca�ering event (a) visualized for the five
spectral trackers compared in Figure 9. The histograms of path throughputs
in (b) illustrate how the history-aware average-based probabilities bound
the path throughput regardless of the number of sca�ering events and the
spatial and spectral variations of the collision coe�icients.

5.3 Analysis & Discussion
Figure 9 visualizes multi-bounce path throughputs—their means

and standard-deviation bands—as a function of distance obtained

with (non-decomposed) spectral tracking with various schemes for

setting the collision probabilities. We also include the naive delta

tracking algorithm that handles each wavelength independently. In

order to emphasize the di�erences in the weighting schemes, the

medium is non-absorptive, i.e. albedo α = 1, with largely uncorre-

lated scattering coe�cients. Each spectral tracker produces paths

with a di�erent average number of scattering events, which are all

around 4 in this case. For the trackers that bound the throughput,

the throughput ceiling is visualized. The history-aware trackers

provide a better-behaved path throughput and lower estimation

noise than the other techniques in this test.

Figure 10(a) shows the distribution of the �rst scattering event for

the setting in Figure 9. Note that the history-aware average-based

probability scheme produces the same distribution of distances as

naive delta tracking. Since all trackers are unbiased, multiplying

the distance distributions in Figure 10(a) by the corresponding RGB

throughputs always yields the same weighted distribution.

Figure 10(b) shows histograms of path throughputs after multiple

(forward) scattering collisions. The wider the tail of the histogram,

the more prone the tracker is to �re�ies. In this scene, the history-

aware average-based tracker is immune to such problems as it keeps

the throughput at 1 during the path construction.
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Figure 11. Delta tracking in (a), (c) and decomposition tracking in (b), (d) produce the same image up to identical noise pa�erns (see the top insets). However,
decomposition tracking requires 42% and 58% fewer extinction lookups to render the optically thicker (top) and thinner (bo�om) cloud, respectively. The
lookup counts within a thin slice and across the full volume are visualized in the le� and right false-color images, respectively, for renderings with 1024 spp.

6 IMPLEMENTATION & RESULTS
In addition to implementing the various trackers in a simple Monte

Carlo framework for running the canonical experiments, we inte-

grated them into a production path tracer for generating the results

in this section. We use an octree as an acceleration structure to cull

empty space and store approximate local minorants and majorants

of the underlying volumes. The octree adapts to the homogeneity

of the volume. We use VDB [Museth 2013] for storing voxel-based

volumetric datasets.

We compare the performance using the number of lookups, the

render time, the root mean square error (RMSE), and the “lookups-

to-unit-variance” (LTUV) metric, which is computed as the product

of the number of lookups and variance. For all of the aforementioned

metrics, lower values represent better performance. The timings

were measured on a dual 12-core 2.50 GHz Intel Xeon E5-2680 v3

but we report them in single-core equivalents.

Cloud Scene. Figure 11 shows an optically thick and an opti-

cally thin cloud with α = 1, a Henyey–Greenstein phase func-

tion [Henyey and Greenstein 1941] with д = 0.877, and an octree

depth of 8. The insets were rendered with 32 samples per pixel (spp),

and the statistics are based on these renders. For the two con�g-

urations, our decomposition tracking avoids 42% and 58% of the

extinction lookups required by delta tracking, respectively. Note

that the noise produced by both trackers is identical as our decompo-

sition tracking does not change the light paths, but generates them

with signi�cantly fewer lookups.

Table 2. Comparisons of delta and decomposition tracking performance for
various octree depths. The scene is the thick cloud from Figure 11, rendered
with 32 spp. The last two rows report the non-lookup tracker time.

Octree depth 1 4 8 16

Octree leaves visited 1.86 G 2.06 G 3.11 G 4.05 G

Lookup num. (Delta) 106 G 22.8 G 2.96 G 2.49 G

Lookup num. (Decomp) 106 G 22.6 G 1.71 G 1.03 G

Lookup time (Delta) 20065 s 5785 s 1030 s 876 s

Lookup time (Decomp) 20065 s 5472 s 536 s 336 s

Octree time (Delta) 64 s 315 s 734 s 916 s

Octree time (Decomp) 64 s 319 s 714 s 918 s

Tracker time (Delta) 6108 s 1389 s 299 s 321 s

Tracker time (Decomp) 6108 s 1379 s 280 s 300 s

The false-color images visualize the number of lookups on a

plane cutting through the volume (left) and integrated over the

entire volume by sweeping the plane through it (right). Note that

the number of lookups is reduced most in the interior of the cloud

where the extinction varies less.

In Table 2, we study the impact of the octree depth on the per-

formance of the thick cloud. With no spatial partitioning (depth

1), delta and decomposition tracking exhibit near-identical perfor-

mance; the control component is 0. Increasing the depth allows the
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(a) Ground truth (b) Delta tracking
RMSE: 0.086

LTUV: 1422.8K

(c) Spec. tracking (max)
RMSE: 0.047

LTUV: 579.6K

(d) Spec. tracking (avg)
RMSE: 0.052

LTUV: 689.3K

Figure 12. A colorful explosion with chromatic extinction rendered using 8 samples with delta tracking (b) in 198 core seconds, with spectral tracking using
history-aware maximum-based probabilities (c) in 245 seconds, and with spectral tracking using history-aware average-based probabilities (d) in 266 seconds.
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(f) Non-absorbing volume

Figure 13. E�ects of non-bounding free-path-sampling coe�icients on the
variance of rendering an absorbing (le�) and a non-absorbing (right) color
explosion scene. Both versions use the same colored extinction coe�icients—
only the albedo di�ers. In (a) and (b), we used a bounding µ̄ . In (c) and (d),
the µ̄ is scaled down by 0.4 leading to increased variance. The plots show
various statistics as functions of the relative free-path-sampling coe�icient.

decomposition to reduce the lookups more e�ectively since the vol-

ume within each octree leaf becomes more homogeneous; however,

octree traversal eventually begins to dominate the render time. We

found that maximum depths of 8–10 typically strike a good balance

in such scenes. The decomposition reduces the overall render time

by 10–20% as the octree traversal, directional sampling, and other

overheads take signi�cant time.

(a) Maximum-based (b) Average-based

Figure 14. Comparison of the history-aware probabilities on the non-
absorbing color explosion scene with adjusted exposure to visualize fireflies.

Color Explosion. In Figure 12, we show a medium with spectrally

varying absorption, scattering, and extinction coe�cients. We ren-

dered the scene with 8 spp using one-wavelength-at-a-time delta

tracking and our two history-aware spectral trackers. For the same

number of light paths, spectral tracking increases the overall num-

ber of path segments, the number of lookups, and the render time all

by 25%–30% in this scene. This is mainly due to taking smaller steps

on average as the free-path-sampling coe�cient must bound the

extinction across all wavelengths in the highly chromatic medium.

The slightly higher cost is compensated for by the 40%–45% lower

RMSE, which amounts to 2.7×–3.4× lower variance for the average-

based and maximum-based probabilities, respectively. The overall

improvement over delta tracking is 2.06×–2.46× lower LTUV with

the maximum-based probabilities yielding slightly better perfor-

mance than the average-based ones in this particular scene.

In Figure 13, we study how various statistics of the spectral tracker

depend on the value of the free-path-sampling coe�cientwith focus

on situations when µ̄ (x) < µt (x). We analyze two con�gurations:

an absorbing (left) and a non-absorbing (right) version of the color

explosion. The 16-spp images in the �rst and second rows show

how the noise increases when the bounding piecewise constant µ̄ (x)
is globally scaled down; see the supplementary material for more

examples. As shown in the plots, lower values of the multiplier, i.e.

more frequent and more signi�cant underestimation of the bound,

reduce the tracking cost. However, the variance and the LTUV rise

abruptly due to many positive and negative �re�ies, especially when

the volume is non-absorbing.

In Figure 14, we compare the history-aware maximum-based and

history-aware average-based probabilities on the non-absorbing

color explosion scene, illustrating the robustness of the latter to

high albedos. See the supplemental material for full images.
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(a) Ground truth (b) Delta tracking
RMSE: 0.0939

LTUV: 296.2K

(c) Spectral tracking
RMSE: 0.0559

LTUV: 109.8K

(d) Spec. & dec. tracking
RMSE: 0.0569

LTUV: 53.5K

Figure 15. A translucent heterogeneous Stanford dragon with chromatic extinction rendered using 40 samples with delta tracking (b) in 133 core seconds,
spectral tracking (c) in 112 core seconds, and spectral & decomposition tracking (d) in 88 core seconds.

Translucent Dragon. Our techniques can also be used for simu-

lating subsurface scattering. Figure 15 shows a translucent dragon

with a smooth dielectric boundary enclosing a colored, procedural

medium. In this case, no acceleration data structure was used—the

control and free-path-sampling coe�cients are based on approxi-

mate minimum and maximum values over the entire medium, found

by random sampling in a short pre-pass. In this �gure, handling the

spectrally resolved coe�cients using our spectral tracking reduces

the LTUV by 2.70×, and our weighted decomposition tracking fur-

ther reduces it by 2.05×. Together, the spectral and decomposition

techniques yield 5.54× lower LTUV than delta tracking and 1.65×

lower RMSE.

The time spent simulating subsurface scattering reduces from 133

core seconds with delta tracking, to 112 with spectral tracking, an to

88 with spectral and decomposition tracking. The decrease in render

time with spectral tracking is caused by di�erent path distributions

and by lower throughputs allowing Russian roulette to terminate

paths earlier. The decrease in render time with decomposition easily

compensates for the corresponding slight increase in RMSE. In all

cases, the total render time is about 80 core seconds higher than

the subsurface scattering time. Spectral and decomposition tracking

together reduce the total render time by 22%.

7 DISCUSSION & FUTURE WORK
Performance. While our techniques—combined or standalone—

outperform the previous state of the art in many situations, certain

scene con�gurations may not harvest the full bene�t. For instance,

the e�ciency of decomposition tracking largely depends on how

tightly we can bound the extinction coe�cient from below. This

can becomes challenging when the medium exhibits a high degree

of heterogeneity, in which case the performance largely depends

on how well the spatial structure isolates and subdivides heteroge-

neous regions. We experimented with uniform grids and octrees,

with the latter providing generally better performance. Higher ef-

�ciency could possibly be obtained with kd-trees [Yue et al. 2010]

and polynomial bounds [Szirmay-Kalos et al. 2011].

An important feature of our weighted decomposition and spectral

trackers is the ability to handle non-bounding free-path-sampling

coe�cients and control extinctions. Not having to worry about

occasionally violating the desired inequalities µct (x) ≤ min(µt (x)),
µ̄ (x) ≥ max(µt (x)) enables fast precomputation of near-optimal

control and free-path-sampling coe�cients, even for (non-pathologi-

cal) procedural volumes.

In some situations, spatially varying lookups may not be the

bottleneck, in which case decomposition tracking can only o�er a

rather small improvement in overall render time. Decomposition

tracking excels in situations where memory lookups are expensive,

data sets are large and prone to cache thrashing, or expensive high-

order interpolation is used. Especially if the volume is modeled with

complex procedural functions, the savings can be considerable.

It is also worth noting that our methods retain correctness and

e�ciency with arbitrary (valid) values of the collision coe�cients

and the albedo, as long as the free-path-sampling coe�cient (ap-

proximately) bounds the extinction coe�cient.

Unknown Distance PDF and MIS. The PDF of the free-path sample

cannot be evaluated exactly (only estimated or approximated). This

drawback is common to all rejection-based trackers and might ap-

pear as preventing the combination of multiple path-construction

strategies using MIS, as in next-event estimation (NEE) or bidi-

rectional techniques. However, we can still compute the optimal

balance-heuristic weight if we use the same unbiased tracker for

free-path and transmittance sampling; their PDFs are identical and

cancel out in the calculation of the MIS weight. This is true even

for our spectral tracker since the distance PDFs are not wavelength-

dependent. The balance-heuristic weight is thus e�ectively based

only on directional PDFs; this is what we use for volumetric NEE.

Note that the cancellation occurs only for certain MIS heuris-

tics (e.g. balance or power) and only if use use the same tracker

for free-path and transmittance sampling. This recipe thus does

not generalize. Nevertheless, a near-optimal weight can almost al-

ways be computed using a deterministic approximation of the PDF

(obtained e.g. by an extra ray-marching pass [Wilkie et al. 2014]).
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7.1 Future Work
Adjoint-guided Tracking. As demonstrated in Section 5, the prob-

abilities Pa , Ps , and Pn can be adjusted in many ways to achieve

certain goals—in our case to reduce the weight when tracking mul-

tiple wavelengths. We have merely scratched the surface of the

large body of problems that could bene�t from having this freedom.

For instance, if information about the distribution of light in the

scene is available, the probabilities could be biased towards increas-

ing the absorption rates [Spanier and Gelbard 1969; Steen 1966] in

emissive parts, or scattering more in brightly lit regions. Incorpo-

rating techniques for importance sampling single or double scatter-

ing [Georgiev et al. 2013; Kalli and Cashwell 1977; Kulla and Fajardo

2012] into the tracker, and investigating advanced zero-variance

schemes [Dwivedi 1982] would be interesting future avenues.

Dynamically Re�ned Extinction Bounds. To reduce the signi�-

cance of �nding tight extinction bounds a priori, the extinction

bounds could be re�ned progressively based on actual extinction

lookups during rendering. The initial extinction bounds could be

set conservatively wide (slowing down the simulation at �rst), or to

rough estimates (temporarily increasing variance), and then dynam-

ically re�ned. This would be highly desirable for large production

assets where lengthy precomputations impede productivity.

8 CONCLUSION
We presented two complementary techniques, the decomposition

tracking for reducing costs, and the spectral tracking for reducing

variance when simulating light transport in heterogeneous volumes.

The combination of the two yields higher performance than previous

state-of-the-art methods and gracefully handles spectrally resolved

collision coe�cients. We derived both approaches directly from

the RTE using the recently proposed integral formulation of null-

collision algorithms. We believe that importing this framework into

computer graphics will stimulate further explorations in applica-

tions that are unique to rendering, but also increase the permeability

between �elds by enabling easy exchange of novel ideas.
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A FREE-PATH-SAMPLING RESIDUAL RATIO TRACKING
Novák et al. [2014] brie�y discuss a potential free-path-sampling

technique based on the mechanisms underlying residual ratio track-

ing. The authors suggest sampling free paths analytically from a rep-

resentative control volume and then computing the sample weight

using ratio tracking. We observe that this algorithm is a special case

of weighted delta tracking with the con�guration

µ̄ (x) = µct (x) + µ̄
r (x), (34)

Pt (x) =
µct (x)
µ̄ (x)

, Pn (x) =
µ̄r (x)
µ̄ (x)

, (35)

where Pt (x) is the probability of sampling a real collision (absorp-

tion or scattering). As the authors describe, µct (x) and µ̄r (x) must

allow analytic free-path sampling, and would in practice be set to

constants, such as avg(µt (x)) and max( |µrt (x) |), respectively. Since

the distribution of sampled free paths is fully determined by the rel-

atively simple µct (x), it can di�er drastically from the true free-path

distribution, frequently resulting in extreme weights.

B INTEGRAL FORMULATION OF TRANSMITTANCE
ESTIMATORS

In order to derive the integral formulation of transmittance trackers,

we �rst modify the RTE to estimate only transmittance (i.e. uncol-

lided radiance). We rewrite Equation (3) to account only for losses

and a point source of unit radiance at xd , xd = x0 − dω:

(ω · ∇)L(x,ω) = − [µt (x) + µn (x)]L(x,ω) + δ (x − xd )

+ µn (x)
∫
S2

δ (ω − ω̄)L(x, ω̄) dω̄ . (36)

Integrating both sides along ω,

L(x,ω) =
∫ ∞

0

exp

(
−

∫ t

0

µ̄ (xs ) ds

)
×

[
δ (xt − xd ) + µn (xt )L(xt ,ω)

]
dt

=

∫ ∞

0

exp

(
−

∫ t

0

µ̄ (xs ) ds

)
δ (xt − xd ) dt

+

∫ ∞

0

exp

(
−

∫ t

0

µ̄ (xs ) ds

)
µn (xt )L(xt ,ω) dt , (37)

solving the Dirac integral, noting that we only need to integrate

up to the remaining distance di to the point source (L(x,ω) = 0 for

t > d), and introducing p (t ) yields

L(x,ω) = exp
*
,
−

∫ di

0

µ̄ (xs ) ds+
-
+

∫ di

0

p (t )
µn (xt )
µ̄ (xt )

L(xt ,ω) dt , (38)

which represents the weighted next-�ight estimator presented by

Cramer [1978]. At each collision point, the estimator performs

a next-�ight estimation by adding an underestimated uncollided

contribution—the transmittance through the rest of the combined
medium (�rst term)—and then proceeds with sampling null colli-

sions to correct for the initial underestimation (second term). The

Monte Carlo score can be written as

w (X) =
k−1∑
i=0

exp
*
,
−

∫ di

0

µ̄ (xs ) ds+
-

i∏
j=1

µn (xj )
µ̄ (xj )

, (39)

where k is the index of the �rst collision after exceeding distance d
from x0. To the best of our knowledge, this is the �rst derivation

of the next-�ight estimator directly from a modi�ed version of the

RTE, and its �rst description in computer graphics literature.

Cramer [1978] also analyzed a simpler version, which removes

the next-�ight estimation and tracks only the product of relative

concentrations of null particles. By observing that the transmittance

from 0 to di is equivalent to the integral of p (t ) from di to ∞, we

can rewrite Equation (38) to

L(x,ω) =
∫ di

0

p (t )
µn (xt )
µ̄ (xt )

L(xt ,ω) dt +

∫ ∞

di
p (t ) dt . (40)

The two integrals in Equation (40) each contain the same PDF and

have disjoint domains whose union is the whole domain of the PDF,

leading to a natural translation into a Monte Carlo estimator. In

particular, we sample a distance t according to p (t ), then return the

remaining factors of the corresponding integrand:
µn (xt )
µ̄ (xt )

L(xt ,ω) if

t < di and 1 otherwise. The Monte Carlo score simpli�es to

w (X) =
k−1∏
j=1

µn (xj )
µ̄ (xj )

. (41)

In the context of rendering, this algorithm was reinvented and

studied by Novák et al. [2014] under the name ratio tracking.
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