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The motivation for developing the techniques that we present today was the 
need to render scenes with heterogeneous participating media, such as these. 
Our goal was to synthesize those with a production path tracer, where each 
path sample needs to be relatively cheap, but preferably unbiased, so that we 
can rely on averaging of samples.
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Media that we are interested in consist of particles that interact with light. In 
graphics, we rarely model the particles explicitly. Instead, we describe the 
medium by coefficients that characterize the absorption and scattering of light. 
Adding these together, yields the extinction coefficient that represents how 
much light interacts with the medium in general per unit flight distance.
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Having these coefficients, we can probabilistically simulate how far a photon 
travels before interacting with a particle. This is called free-path sampling (or 
free-flight distance sampling). We can also estimate how much light is 
transmitted between any two points without being absorbed or out-scattered. 
The transmittance through the medium is described by an exponentiated 
integral of the negative extinction coefficient. Here we plot the extinction 
coefficient, and the corresponding transmittance function along the ray.
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Efficient free-path sampling and transmittance estimation is key to many 
volume-rendering algorithms, here we have for instance a volumetric path 
tracer. A lot of research has been recently devoted to how to sample global 
illumination in volumes efficiently, and also how to build the free-paths quickly 
(the black segments here). But relatively little has been done to efficiently 
estimate the transmittance,... all the blue segments in this illustration. So this 
is what we focus on in this talk, but before I mention our contributions, let me 
first review existing techniques.
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If the medium is homogeneous, we can evaluate transmittance exactly and 
sample free paths analytically. 
This is unfortunately possibly only for homogeneous, or very simple volumes.

If the volume is heterogeneous, but can be represented as voxels, we can step 
through the voxels and use the analytic techniques. Unfortunately, the stepping 
can quickly become too expensive. 

To make the computation tractable, we often ignore the boundaries and simply 
march with a constant step size. The drawback of such ray-marching is that it 
provides only approximate results, it is indeed BIASED. 

In our case, we need a technique that is unbiased, such as Delta tracking, so 
that we can rely on the error being averaged out by taking more samples. Since 
Delta tracking forms the basis for our algorithms, I’ll describe it in greater 
detail.
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The technique is also known as Woodcock tracking, pseudo scattering, or the 
null-collision algorithm. 

The fundamental idea of the algorithm is to homogenize the medium, so that 
we can sample free-paths analytically.

This is achieved by adding special particles that have albedo 1 and perfectly 
forward scattering phase function so they have effectively no impact on photon 
trajectories. We will refer to them as fictitious particles.

Prentending that such particles exist greatly simplifies the free-flight distance 
sampling.
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Let’s say we want to probabilistically sample free-flight distance along a ray 
with the following extinction function.

We first add fictitious particles along the ray, but always just the right amount 
so that when we combine the real and the fictitious extinction, we get a 
constant value, often referred to as the majorant extinction.

The fact that the combined medium is homogeneous allows the algorithm to 
ANALYTICALLY sample free-paths
creating a so-called tentative collision. 

Next, we need to decide, whether the tentative collision is a real one, or 
whether it involved a fictitious particle.

This is done probabilistically where the probabilities are set to the relative 
concentrations of real and fictitious particles.

In this case, the algorithm probabilistically classified the collision as fictitious, 
so it will continue generating new tentative collisions until is classified as real.
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Please note, that the amount of fictitious particles impacts the efficiency of the 
algorithm.

When the majorant tightly bounds the extinction function, the algorithm is 
relatively efficient.

But when there are many fictitious particles, there will be many fictitious 
collisions, 
and generating the free path is going to be expensive.

This is unfortunately quite common in practice, where the majorants are 
precomputed for entire volumes, or regions of the volume, and so it often 
happens that the majorant does not tightly bound the extinction along the ray.
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algorithm.

When the majorant tightly bounds the extinction function, the algorithm is 
relatively efficient.

But when there are many fictitious particles, there will be many fictitious 
collisions, 
and generating the free path is going to be expensive.

This is unfortunately quite common in practice, where the majorants are 
precomputed for entire volumes, or regions of the volume, and so it often 
happens that the majorant does not tightly bound the extinction along the ray.
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In addition to sampling paths, the tracking can also be used for estimating 
transmittance between points. The idea is to start the tracking from one point 
and see if it reaches the second one. This happens when only fictitious 
collisions occur, then transmittance is estimated as 1.

Shall there be a real collision somewhere along the line, the tracking is 
terminated, and transmittance set to 0. You see that the estimation is binary, 
and will suffer from high variance.
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Things get even worse when the majorant is loose, as I mentioned previously, 
loose majorants increase the cost of the tracking significantly.

You can see this on the right-hand side, where the tracking takes many steps, 
but yields the same binary estimate.

The question now is,...        can we do better? Can we somehow utilize the 
steps more intelligently than deducing just a binary answer?
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steps more intelligently than deducing just a binary answer?
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Things get even worse when the majorant is loose, as I mentioned previously, 
loose majorants increase the cost of the tracking significantly.

You can see this on the right-hand side, where the tracking takes many steps, 
but yields the same binary estimate.

The question now is,...        can we do better? Can we somehow utilize the 
steps more intelligently than deducing just a binary answer?
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The first technique that I’ll present aims at this problem. 

We call it ratio tracking and it’s goal is to replace the binary estimate with a 
piece-wise constant approximation, without increasing the cost significantly.
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Let’s quickly recap the Delta tracking

It builds a random walk. The walk is probabilistically terminated...  at the first collision classified 
as real, and depending whether the walk reached the desired distance, the estimator scores 0 or 
1. So we can think of Delta tracking as a random walk terminated by Russian roulette.

Our goal here is to refine the binary estimation. Instead of probabilistically terminating the walk, 
we always continue, but at each step, we compute a weight, which equals the ratio of fictitious 
particles to all the particles (to the majorant), the product of these weights then becomes the 
score of the estimator.

In a nutshell, we could say that the Ratio tracking disables the Russian roulette that was there 
previously, and factors its probabilities into the score.

Please see the paper for an exact definition of the algorithm. 

The main advantage of Ratio tracking is that it produces a piecewise-constant approximation.
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The main advantage of Ratio tracking is that it produces a piecewise-constant approximation.
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particles to all the particles (to the majorant), the product of these weights then becomes the 
score of the estimator.

In a nutshell, we could say that the Ratio tracking disables the Russian roulette that was there 
previously, and factors its probabilities into the score.
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The main advantage of Ratio tracking is that it produces a piecewise-constant approximation.
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as real, and depending whether the walk reached the desired distance, the estimator scores 0 or 
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Our goal here is to refine the binary estimation. Instead of probabilistically terminating the walk, 
we always continue, but at each step, we compute a weight, which equals the ratio of fictitious 
particles to all the particles (to the majorant), the product of these weights then becomes the 
score of the estimator.

In a nutshell, we could say that the Ratio tracking disables the Russian roulette that was there 
previously, and factors its probabilities into the score.

Please see the paper for an exact definition of the algorithm. 

The main advantage of Ratio tracking is that it produces a piecewise-constant approximation.
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as real, and depending whether the walk reached the desired distance, the estimator scores 0 or 
1. So we can think of Delta tracking as a random walk terminated by Russian roulette.

Our goal here is to refine the binary estimation. Instead of probabilistically terminating the walk, 
we always continue, but at each step, we compute a weight, which equals the ratio of fictitious 
particles to all the particles (to the majorant), the product of these weights then becomes the 
score of the estimator.

In a nutshell, we could say that the Ratio tracking disables the Russian roulette that was there 
previously, and factors its probabilities into the score.

Please see the paper for an exact definition of the algorithm. 
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It builds a random walk. The walk is probabilistically terminated...  at the first collision classified 
as real, and depending whether the walk reached the desired distance, the estimator scores 0 or 
1. So we can think of Delta tracking as a random walk terminated by Russian roulette.

Our goal here is to refine the binary estimation. Instead of probabilistically terminating the walk, 
we always continue, but at each step, we compute a weight, which equals the ratio of fictitious 
particles to all the particles (to the majorant), the product of these weights then becomes the 
score of the estimator.

In a nutshell, we could say that the Ratio tracking disables the Russian roulette that was there 
previously, and factors its probabilities into the score.

Please see the paper for an exact definition of the algorithm. 

The main advantage of Ratio tracking is that it produces a piecewise-constant approximation.
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The only disadvantage of our approach is that it requires these additional 
steps. These can make it less efficient than Delta tracking in certain situations.
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We have a thorough analysis of the performance of the two algorithms in the 
paper, 
but I will skip it here and summarize it by saying that:

In practical applications... Ratio tracking can be significantly better, but never 
significantly worse than Delta tracking.
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We have a thorough analysis of the performance of the two algorithms in the 
paper, 
but I will skip it here and summarize it by saying that:

In practical applications... Ratio tracking can be significantly better, but never 
significantly worse than Delta tracking.
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Let’s look at a few illustrations to better understand why. When the majorant is 
loose, the Ratio tracking provides a much finer, piecewise constant 
approximation. You can see that it better matches the red reference. This is 
because it leverages the tentative collisions more efficiently than Delta 
tracking.
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If the majorant tightly bounds the extinction, the Ratio tracking is still better, 
but the advantages over Delta tracking may not be as significant.
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And in cases when the majorant is perfect, meaning that we don’t need to add 
any fictitious particles to sample free-paths, both trackings provide just a 
binary transmittance estimate. So Ratio tracking helps when there are many 
fictitious particles, but it is less useful when there are only a few, or none.
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Here is one such example... a homogeneous medium bounded by an indexed-
matched interface. Since the medium is homogeneous, we could evaluate the 
transmittance analytically. 

But let’s say we don’t know this a-priori, and we use the Delta or Ratio 
tracking. Both techniques provide binary transmittance estimates yielding high 
variance.

So our next goal is to reduce the noise also in these cases, when the medium is 
homogeneous, or has a small degree of heterogeneity.
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Here is one such example... a homogeneous medium bounded by an indexed-
matched interface. Since the medium is homogeneous, we could evaluate the 
transmittance analytically. 

But let’s say we don’t know this a-priori, and we use the Delta or Ratio 
tracking. Both techniques provide binary transmittance estimates yielding high 
variance.

So our next goal is to reduce the noise also in these cases, when the medium is 
homogeneous, or has a small degree of heterogeneity.
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“from	
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  constant	
  to	
  piecewise	
  exponen*al”

I will now talk about our second variance reduction approach called Residual 
tracking, which is inspired by control variates.
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We attempt to reduce the variance by evaluating part of the transmittance 
analytically, and numerically estimate only the remainder. For this, we 
decompose the original medium into a sum of a control medium and a residual 
medium.

The transmittance can be then computed as the product of transmittances 
evaluated independently through each of the two media. As long as the control 
extinction matches the original one well, 
the error of the numerical estimation will be reduced.
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medium.
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evaluated independently through each of the two media. As long as the control 
extinction matches the original one well, 
the error of the numerical estimation will be reduced.
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We attempt to reduce the variance by evaluating part of the transmittance 
analytically, and numerically estimate only the remainder. For this, we 
decompose the original medium into a sum of a control medium and a residual 
medium.

The transmittance can be then computed as the product of transmittances 
evaluated independently through each of the two media. As long as the control 
extinction matches the original one well, 
the error of the numerical estimation will be reduced.
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We attempt to reduce the variance by evaluating part of the transmittance 
analytically, and numerically estimate only the remainder. For this, we 
decompose the original medium into a sum of a control medium and a residual 
medium.

The transmittance can be then computed as the product of transmittances 
evaluated independently through each of the two media. As long as the control 
extinction matches the original one well, 
the error of the numerical estimation will be reduced.
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We have many options, how to choose the control extinction. We can for 
instance use a single global value, set to the minimum extinction in the 
volume, or to the average, or the maximum extinction over the entire volume, 
or even some arbitrary value.

You can see how it impacts the values of the control and residual 
transmittance.



00

Residual	
  Tracking

28

Ex*nc*on Control	
  ex*nc*on Residual	
  ex*nc*on

= +

0

0

1

Transmi>ance
0

1

Control	
  transmi>ance

= *
0

1

Residual	
  transmi>ance

We have many options, how to choose the control extinction. We can for 
instance use a single global value, set to the minimum extinction in the 
volume, or to the average, or the maximum extinction over the entire volume, 
or even some arbitrary value.

You can see how it impacts the values of the control and residual 
transmittance.
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We have many options, how to choose the control extinction. We can for 
instance use a single global value, set to the minimum extinction in the 
volume, or to the average, or the maximum extinction over the entire volume, 
or even some arbitrary value.

You can see how it impacts the values of the control and residual 
transmittance.
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We have many options, how to choose the control extinction. We can for 
instance use a single global value, set to the minimum extinction in the 
volume, or to the average, or the maximum extinction over the entire volume, 
or even some arbitrary value.

You can see how it impacts the values of the control and residual 
transmittance.
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It is worth noting that the residual extinction can be negative. When this 
happens, it means that the transport should be amplified, instead of being 
attenuated.

This amplification cannot be handled by all algorithms, for instance we cannot 
use the Delta tracking as the amplification requires an additional weight.

But we can use the previously mentioned Ratio tracking, which handles 
negative extinctions natively without any problem.
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It is worth noting that the residual extinction can be negative. When this 
happens, it means that the transport should be amplified, instead of being 
attenuated.

This amplification cannot be handled by all algorithms, for instance we cannot 
use the Delta tracking as the amplification requires an additional weight.

But we can use the previously mentioned Ratio tracking, which handles 
negative extinctions natively without any problem.
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It is worth noting that the residual extinction can be negative. When this 
happens, it means that the transport should be amplified, instead of being 
attenuated.

This amplification cannot be handled by all algorithms, for instance we cannot 
use the Delta tracking as the amplification requires an additional weight.

But we can use the previously mentioned Ratio tracking, which handles 
negative extinctions natively without any problem.
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Simple,	
  moderately	
  
heterogeneous	
  volume

Example:

Let’s look at an example rendered with the residual ratio tracking, here we 
have a volume with a relatively low degree of heterogeneity.
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In the top row, we use the minimum extinction in the volume as the control 
extinction. In the middle we use the mean extinction as the control, and at the 
bottom we have the maximum as the control.

Note how the residual transmittance... in the middle... always corrects the 
control transmittance. and in all cases, the resulting product is an unbiased 
estimate of the transmittance.

But it seems that the average extinction works better than the other values in 
this simple example. However, using a single control for the entire volume 
leads a very non-uniform noise. 
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Optimally, we would want the control to be somewhat localized, so that it 
better matches the extinction function. There has been some research on 
localizing majorant coefficients for Delta tracking. We use the approach by 
Szirmay-Kalos and construct a grid of super-voxel, each storing a local control 
extinction function. We also experimented with constant and linearly 
interpolated control extinctions, I’ll show an example in a moment.
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Optimally, we would want the control to be somewhat localized, so that it 
better matches the extinction function. There has been some research on 
localizing majorant coefficients for Delta tracking. We use the approach by 
Szirmay-Kalos and construct a grid of super-voxel, each storing a local control 
extinction function. We also experimented with constant and linearly 
interpolated control extinctions, I’ll show an example in a moment.
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Let’s look at some results, this is an absorbing heterogeneous medium.
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Residual	
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In the top row, we have the control medium that uses the super-voxels. In this 
case, each super-voxel stores the minimum extinction value, which is used as 
the control. This is the residual medium. And here is a product of the control 
and residual transmittance. The right-most false-color rendering shows the 
variance of the estimator.
In the second row, the super-voxels store the average extinction. In the last 
row, we used the maximum extinction.
You can see that the lowest overall variance is obtained with the average 
extinction.
In the paper, we propose an additional heuristics to make the control more 
robust.
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In the top row, we have the control medium that uses the super-voxels. In this 
case, each super-voxel stores the minimum extinction value, which is used as 
the control. This is the residual medium. And here is a product of the control 
and residual transmittance. The right-most false-color rendering shows the 
variance of the estimator.
In the second row, the super-voxels store the average extinction. In the last 
row, we used the maximum extinction.
You can see that the lowest overall variance is obtained with the average 
extinction.
In the paper, we propose an additional heuristics to make the control more 
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It is possible to also linearly interpolate the control extinction in each super-
voxel. This makes the control smoother and it can further reduce the noise. It 
may also serve well for level-of-detail rendering, where we simply omit the 
residual tracking and use just the control transmittance.
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  Ex*nc*on

In this example, we have clouds with colored extinction. Let’s first look at the 
transmittance along the primary rays. All images were rendered at equal cost.
Delta tracking produces a lot of color noise, as it needs to handle the 
transmittance through each color channel independently.... in order to be 
efficient.
Ratio tracking can efficiently handle all color channels at once, removing the 
color noise and if we combine it with residual tracking, we get additional 
significant reduction in variance.
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In this example, we have clouds with colored extinction. Let’s first look at the 
transmittance along the primary rays. All images were rendered at equal cost.
Delta tracking produces a lot of color noise, as it needs to handle the 
transmittance through each color channel independently.... in order to be 
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Ratio tracking can efficiently handle all color channels at once, removing the 
color noise and if we combine it with residual tracking, we get additional 
significant reduction in variance.
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In this example, we have clouds with colored extinction. Let’s first look at the 
transmittance along the primary rays. All images were rendered at equal cost.
Delta tracking produces a lot of color noise, as it needs to handle the 
transmittance through each color channel independently.... in order to be 
efficient.
Ratio tracking can efficiently handle all color channels at once, removing the 
color noise and if we combine it with residual tracking, we get additional 
significant reduction in variance.
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The next set of images shows the same scene, but this time rendered with two 
bounces in the medium.
You can see that even in this case, the reduction in variance that residual ratio 
tracking provides leads to a much lower overall amount of noise.
In the interest of time, I will refer you to the paper for additional results.
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The next set of images shows the same scene, but this time rendered with two 
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In the interest of time, I will refer you to the paper for additional results.
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The next set of images shows the same scene, but this time rendered with two 
bounces in the medium.
You can see that even in this case, the reduction in variance that residual ratio 
tracking provides leads to a much lower overall amount of noise.
In the interest of time, I will refer you to the paper for additional results.



Residual	
  Ra*o	
  Tracking

Colored	
  Ex*nc*on

Ra*o	
  Tracking

Delta	
  Tracking

Residual	
  Ra*o
Tracking

RMSE:	
  0.082

RMSE:	
  0.101

RMSE:	
  0.123

Dual	
  sca>ering

The next set of images shows the same scene, but this time rendered with two 
bounces in the medium.
You can see that even in this case, the reduction in variance that residual ratio 
tracking provides leads to a much lower overall amount of noise.
In the interest of time, I will refer you to the paper for additional results.
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The techniques that I presented are weighted random walks
that provide a piecewise-constant or piecewise-exponential unbiased 
approximations
The Ratio tracking handles well media with high degree of heterogeneity. 
Residual tracking then improves cases with low degree of heterogeneity.
In the future, we would like to investigate higher order basis functions for the 
control extinction 
to make it better match the actual extinction.
On a more theoretical level, it would be interesting to further explore other 
variants of weighted (or non-analog) estimator. 
For those interested I recommend looking at the integral formulation of 
tracking algorithms by Galtier et al., which provides a nice theoretical 
framework for expressing different variants of the tracking.
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The tracking is very easy to implement, if you already have Delta tracking with 
some accelerating structure, it will take you less then an hour.... including 
debugging. The technique was used in all volumetric shots in the Big Hero 6 
and parts of it are expected to appear in the next release of Renderman.
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Control Residuum Product Variance

RMSE:	
  0.022

RMSE:	
  0.012

RMSE:	
  0.022

Residual	
  Ra*o	
  Tracking	
  with	
  Super-­‐Voxels


