

Rasterized Bounding Volume Hierarchies

Jan Novák and Carsten Dachsbacher

Computer Graphics Group Karlsruhe Institute of Technology

EUROGRAPHICS 2012

MOTIVATION (Previous Work)

[Havran 2000] [Ernst and Greiner 2007] [Damnertz and Keller 2008] [Popov et al. 2009] [Aila and Laine 2009] [Lauterbach et al. 2009]

MOTIVATION (Previous Work)

[deToledo et al. 2007]

[Baboud and Decoret 2006]

[Baboud and Decoret 2006] [Carr et al. 2006] [Szirmay-Kalos et al. 2005] [deToledo et al. 2007] [Boubekeur et al. 2006]

OVERVIEW

OVERVIEW

OVERVIEW

WISHLIST

RBVH decouple from input geometry:

Rasterized Bounding Volume Hierarchies

Example surfaces (2D):

Construction: I. REFINEMENT CRITERIA

Construction: I. REFINEMENT CRITERIA

Construction: I. REFINEMENT CRITERIA

1) Cone of normals:

rasterize if $\varphi < \varphi_{max}$

good for subdivision surfaces

Construct RBVH (surfaces):

if (surfaces cannot be represented by a single height field) then

Split surfaces into two sets A and B Construct RBVH (A) Construct RBVH (B)

else

Rasterize surfaces into the atlas

1) Spatial Median

Split in the middle along the longest axis.

Construction: II. SUBDIVISION STRATEGIES

How much better is the **Modified SAH** than the **Spatial Median**?

Rasterized Bounding Volume Hierarchies

Construction: II. SUBDIVISION STRATEGIES

Modified SAH (32 split candidates along each axis)

Spatial Median

GPU Ray Tracing [MRays/second] "bigger is better"

Spatial Median = fast construction + reasonable performance! *in case of RBVHs*

3) Object Split

- complementary strategy
- avoids fusing objects into a single height field

а

Orthogonal projection frustum

Refinement criteria ("whether to split"):
Cone of normals or Projected surface area

Subdivision strategies ("where to split"): Spatial median or Modified SAH and Object split

User-defined parameters ("what quality"): global: Sampling rate local: Opening angle or Area ratio

Construction: FURTHER IMPROVEMENTS

Avoid cracks

Allow overlaps Dilatation filter on the atlas

Original atlas

...after applying dilation filter

Construction: FURTHER IMPROVEMENTS

Subdivide large height fields to speed up ray marching

Original **RBVH**

... optimized for fast traversal

Hybrid RBVH

Not all geometry is well-representable by RBVHs

Crytek Sponza with Asian Dragons (22 million triangles)

Hybrid RBVH

Not all geometry is well-representable by RBVHs

Crytek Sponza with Asian Dragons (22 million triangles)

Something Practical: LEVEL OF DETAIL (video)

tree: 4.66 MB atlas: 166.17 MB

Rasterized Bounding Volume Hierarchies

Evaluation: QUALITY

1

	Application: Image based lighting RBVH				
BVH					
reference	Q0	Q1	Q2	Q3	Q4

Evaluation: PERFORMANCE

GPU Ray tracing performance [MRays / second] "bigger is better"

Rasterized Bounding Volume Hierarchies

"smaller is better"

Rasterized Bounding Volume Hierarchies

Realtime (on Surface) Painting

CONCLUSION

CONCLUSION

