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Abstract
We present the rasterized bounding volume hierarchy (RBVH), a compact data structure that accelerates approx-
imate ray casting of complex meshes and provides adjustable level of detail. During construction, we identify
subtrees of BVHs containing surfaces that can be represented by height fields. For these subtrees the conventional
ray-surface intersection, which possibly involves a large number of triangles, is replaced by a simple ray march-
ing procedure to find the intersection with the surface. We describe GPU algorithms for construction, ray casting,
and data querying of the RBVH that achieve comparable or higher performance than state of the art acceleration
structures for triangle meshes. Moreover, RBVHs provide an inherent surface parameterization for storing data
on the surfaces and natively handle triangle and point-based surface representations. We also show that RBVHs
support adaptive level-of-detail and can be combined with traditional BVHs to handle complex scenes.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Graphics data structures and data types

1. Introduction

Interactive ray tracing has been an intensive area of research
in recent years. While the first challenge was to develop ap-
propriate acceleration structures for static scenes that accel-
erate ray casting on modern parallel hardware, research next
began to focus on efficiently building these data structures
for fully dynamic scenes in every frame [WMG∗07]. The
main advantage of ray tracing, compared to rasterization,
is that it naturally handles effects such as reflection or re-
fraction, as secondary rays can be cast easily. For primary
rays, both essentially produce identical results; rasterization
can also be accelerated using spatial data structures, e.g. for
culling (see [COCSD03] and [Dac10] for overviews).

A common consensus is that the intersection computa-
tion for secondary rays is often not required to be accu-
rate, e.g. when computing indirect lighting or glossy reflec-
tions [YCK∗09]. Voxel representations [CNLE09], for in-
stance, can be used for approximate ray casting as they can
be created with arbitrary accuracy, and reach speed compa-
rable to that of triangle-based acceleration structures. How-
ever, their construction typically requires significant time
and memory [LK10]. Other examples of approximate scene
representations used for global illumination are point hierar-
chies [REG∗09] and multiple depth cube maps [YWC∗10].
These approaches have in common that the input surfaces,
typically triangle meshes, are resampled.

In this paper we present a novel acceleration structure pri-
marily targeted at fast, approximate ray casting. The main

difference to standard bounding volume hierarchies, e.g. as
created by [LGS∗09], is that during construction we iden-
tify subtrees containing surfaces which can be represented
by, and thus rasterized to, a height field. For these sub-
trees the conventional ray-surface intersection, possibly in-
volving a large number of triangles, is replaced by a sim-
ple ray marching procedure to find the intersection with the
surface. In general, rasterized bounding volume hierarchies
(RBVHs) are shallow structures with the leaves storing the
scene geometry in the form of height fields (see Fig. 1).
These can be rasterized at an arbitrary resolution and thus,
thanks to decoupling from the input surfaces, inherently pro-
vide means to adjust the level of detail (LOD).

RBVHs are best suited for complex scenes consisting of
large numbers of primitives, e.g. obtained from subdivision
surfaces or scanned environments. We show that in these
cases an RBVH can achieve better approximate ray tracing
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Figure 1: A Rasterized Bounding Volume Hierarchy (RBVH)
represents surfaces using a set of height fields (left) that are
organized into a hierarchy and stored in an atlas (right).
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performance than other accelerating structures. In addition,
RBVHs have further beneficial properties: the height fields
are stored in a texture atlas, which automatically provides
a parameterization of the surfaces and can be used to
store on-surfaces signals, e.g. for interactive painting or
photon mapping. RBVHs are not restricted to polygonal
meshes: all representations that can be rasterized, e.g. point
clouds [GP07], can directly be used during construction.
Finally, the memory footprint of RBVHs is typically much
lower than that of the original geometry as they can be cre-
ated with just the required amount of detail. This enables
ray casting of large scenes with limited memory, e.g. on
GPUs. We describe a parallel construction scheme to build
RBVHs for point representations and triangle meshes suit-
able for GPUs. Furthermore, we introduce a hybrid RBVH
that stores triangles in leaves (like a traditional BVH) when-
ever height fields are not well-suited to represent the geome-
try. We demonstrate the use of RBVHs for applications such
as rendering caustics with photon mapping, glossy reflec-
tions, interactive painting, and ray casting of point clouds.

2. Previous Work
Acceleration Structures for Ray Tracing Hierarchical
and non-hierarchical spatial index structures, with all their
advantages and disadvantages, have been explored for accel-
erating ray casting on various architectures, different scenes
and applications; Wald et al. [WMG∗07] have an excellent
overview. Recent work focuses on building BVHs and kD-
trees on the GPU, where they can be directly used for ray
casting. Lauterbach et al. [LGS∗09] construct LBVHs by
linearizing primitives along a space filling Morton curve
combined with the surface area heuristic (SAH) yielding
close to optimal hierarchies, and thus good overall perfor-
mance for both construction and traversal. This approach has
been improved using a hierarchical formulation [PL10] and
further accelerated with work queues while using less me-
mory [GPM11]. Ray tracing performance of BVHs can be
improved by creating tighter axis-aligned bounding boxes
(AABBs), e.g. by split clipping [EG07], subdividing trian-
gles recursively [DK08], or adapting the SAH [SFD09]. The
potential of these approaches has been analyzed by Popov
et al. [PGDS09] who also present a generic algorithm. Aila
and Laine [AL09] analyze the traversal of BVHs on GPUs
and their work can be considered as state of the art in terms
of ray casting performance. kD-trees can also be efficiently
built on the GPU using a data-parallel spatial median al-
gorithm for the upper levels to partition the workload be-
tween streaming processors [ZHWG08]. In contrast, Choi
et al. [CKL∗10] focus on precise SAH-optimized kD-trees
on architectures with less cores. Various two-level hierar-
chies were proposed for ray tracing dynamic scenes with
nested grids [KBS11] and handling tessellated and displaced
patches [HKL10]. The benefits of using shallow hierarchies
were explored in [DHK08], but only in the context of mul-
ticore CPUs. Note that RBVHs are also shallow, as entire
subtrees are replaced by single height fields.

Ray Tracing with Sample-Based Representations This
topic is intensively studied and closely related to our work.
A classic sample-based representation is the voxelization
of a scene, possibly stored as a hierarchy in an octree,
e.g. [CNLE09, CNS∗11]. Voxel data structures allow for
high ray casting performance and adaptive accuracy [LK10],
but often require significant construction time and memory.
Detailed displacements of smooth surfaces can be repre-
sented as height fields and ray casted very efficiently (see
Szirmay-Kalos and Umenhoffer [SKU08] for an overview).
Ray casting height fields has further been extended to
handle arbitrary geometry using non-orthogonal projec-
tions [BD06]. A set of depth cube maps, rendered from well-
chosen locations within a scene, can also be used to accel-
erate ray casting for photon mapping [YWC∗10]. Carr et
al. [CHCH06] use geometry images which allow for effi-
cient ray casting, since AABBs can be easily obtained from
min/max-mipmaps. Note that this approach handles deform-
ing geometry but the topology is not allowed to change, as
it is too costly to recompute the parameterization on-the-fly.
Closely related to our work, de Toledo et al. [dTWL08] par-
tition an object’s surface and represent the individual parts as
height fields. In contrast to our work, they do not construct a
hierarchical data structure and the build process is too costly
for frequent updates. Although used for storing textures, the
partitioning scheme used in TileTrees [LD07], which splits
the surfaces into parts that can be bijectively projected onto
a cube’s faces, is in spirit similar to ours, but not feasible for
updating the data structure on-the-fly.

Level of Detail An important feature of RBVHs is the
inherent possibility to adjust the LOD of the representa-
tion. Pantaleoni et al. [PFHA10] report that voxelization is
well-suited as an approximate representation for small and
medium sized scenes, but fails to handle large, complex
scenes. They propose to combine acceleration structures
with a multiresolution scheme for LOD. In principle any
mesh decimation method, e.g. progressive meshes [HSH09],
could be used; however, this requires maintaining and imple-
menting two intricate algorithms for LOD and construction.
Related to our work are the volume surface trees [BHGS06]
that combine an octree and a set of quadtrees to represent
surfaces. However, their goal is to resample surfaces for re-
construction and mesh simplification; the resulting structure
is not suitable for ray casting and adaptive level of detail.

3. RBVH Construction

In contrast to a triangle-based BVH, our RBVH can be seen
as a two-level data structure, where the upper part consists
of a shallow tree, and the lower part represents the geometry
using height fields. We build the RBVH in a top-down man-
ner, i.e. we start from the scene’s bounding box represent-
ing the root node and continue with the inner nodes towards
the leaves. In general, each node is split and the primitives
(e.g. triangles or points) partitioned into child nodes until:
(1) the geometry can be faithfully represented as a single
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Figure 2: During the RBVH construction, nodes are further
refined if the cone of normals (a) or the projected area (b)
(depending on which one is used) exceeds a user-defined
quality threshold. In the opposite case, the surfaces within
the node are rasterized using an orthogonal projection (c).

height field, and (2) the cost of intersecting the height field
is smaller than the traversal of an interior node (resembling
the idea of the SAH). Once the geometry is partitioned, we
rasterize the primitives of every individual leaf using an or-
thogonal projection into a texture atlas, where each tile stores
the depth values of a height field that represents the surfaces
in the corresponding leaf.

The RBVH is an approximate, sample-based structure
providing several means to control the quality of the repre-
sentation: in Sect. 3.1 we describe two local criteria to mea-
sure and control the accuracy of representing a surface by a
height field. Then we introduce heuristics for node splitting
and minimizing traversal costs in Sect. 3.2, and finally, in
Sect. 3.3, we detail the global quality control (i.e. the sam-
pling density) achieved through varying the resolution of the
rasterized height fields.

3.1. Refinement Criteria

One integral component of the RBVH construction is an ef-
ficient way to determine whether we can, and should, repre-
sent a part of a surface as a single height field. Such repre-
sentation is only possible without loss of information, if we
find a projection of the surface onto a plane without folding.
Additionally, we strive to sample surfaces as uniformly as
possible and thus we should avoid rasterizing surfaces from
grazing angles. To find a suitable direction and to minimize
the projection error we consider one of the following mea-
sures: the minimum cone subtended by the normals of the
surface, and the area of the projected surface. Both measures
are shown in Fig. 2 and detailed in the following paragraphs.

Cone of Normals The cone of normals of the primitives
within a node can be used to determine if there exists an
orthogonal projection where all surfaces are front-facing: if
the opening angle of the cone is less than π, such directions
exist. Otherwise, we should split the surface and represent it
with multiple height fields. In practice we compute an ap-
proximation [SAE93] and use even narrower cones (e.g.
π/2) enforcing more uniform sampling of surfaces. To ma-
ximize the minimum sampling density (of the most diverted
surface) we orient the projection frustum along the cone axis.

Projected Surface Area Another good projection direc-
tion is the average surface orientation, computed as the area-
weighted sum over all primitives’ normals. It maximizes the
average sampling density, but does not guarantee sampling
of the entire surface, as some primitives might be back-
facing and thus occluded. As a quality metric we use the pro-
jected area A⊥ of the primitives, which equals to the length
of the summed area-weighted normals. We rasterize the sur-
faces if the ratio A⊥/A, where A is the surface area, is greater
than a user-defined threshold α; otherwise we split the node.

Discussion The cone of normals is a restrictive criterion,
splitting a node whenever there is no projection possible
without back-facing primitives. According to our experi-
ments it is best-suited for (manually) modeled scenes, e.g.
from subdivision surfaces. The relative projected area is ro-
bust against noise in the primitives’ orientation, which is
often present in scanned geometry (see Fig. 10). In either
case the projection frustum is defined by the the minimum
bounding box that is oriented along the projection direction
and contains the AABB of the surfaces. We also consider
whether it is beneficial to split the surface, even if it can al-
ready be represented as a height field. Heuristics for splitting
and an their analysis are discussed in Sect. 3.2 and 3.4.

3.2. Subdivision Strategies
The previously described refinement criteria determine
whether a surface has to be split. In this section we discuss
heuristics determining how to actually split the surface, i.e.
how to partition the primitives within a node. We discuss
and compare two approaches partitioning the primitives with
respect to a split plane: the RBVH pendant of the Surface
Area Heuristic (SAH) [Hav00] and the simple spatial me-
dian. We also introduce a complementary object split stra-
tegy that avoids fusing surfaces of different objects.

Surface Area Heuristic Ray casting accelerators are often
built according to the SAH, which defines the cost of a par-
tition by summing up the costs of intersecting each child,
weighted by the respective probability that a ray passes
through them. The minimum is usually greedily searched by
evaluating the cost of several candidate split-planes at the
scope of the current node. In case of the RBVH, the cost of
intersecting a surface amounts to ray marching the respec-
tive height field. The number of ray marching steps depends
on the resolution of the height field, which is in turn linked
to the surface area, as we strive to achieve uniform sampling
(described in Sect. 3.3). Therefore, the area of the childrens’
surfaces is already a good estimate for the intersection cost.
Note that we use the SAH only to determine where to split,
not whether to split. The modified SAH for finding the best
partitioning of a node a into two children b and c is then:

C(b,c) = p(b|a)A(b)+ p(c|a)A(c), (1)

where A(b) is the area of the surface in b, and p(b|a) is the
geometric probability of intersecting b: p(b|a) = S(b)/S(a),
where S(.) is the surface area of a nodes’ bounding box.

c© 2012 The Author(s)
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w/o Object Split

with Object Split

Figure 3: Left: subdividing nodes according to object IDs
prevents excessive refinement and avoids fusing of surfaces.
Right: the RBVH achieves almost uniform sampling across
all surfaces (shown as a checker board on the bunny model).

Spatial Median This simple strategy always places the
split plane in the middle of the bounding box perpendicu-
lar to the longest axis. This can be highly suboptimal in the
case of regular BVHs, as the number of primitives on both
sides can differ significantly. Since RBVHs decouple from
the actual tessellation, the spatial median somewhat resem-
bles the idea of Eq. 1, and, for smooth surfaces in particular,
also tends to split the surface into roughly equal areas (see
Sect. 3.4 for analysis).

Object Split When the surfaces of two or more objects in-
tersect, it is reasonable to split them according to their object
IDs (which is typically available from the scene modeling or
hierarchy). By this, we can avoid excessive refinement due to
a low projected area or diverging normals of nearby objects.
Fig. 3 (left) shows an example where the object splitting also
avoids fusing of two meshes. We perform the object split
whenever a node contains surfaces of exactly two objects.

3.3. Rasterization to the Atlas

After splitting the nodes and creating the tree hierarchy of
the RBVH, we rasterize the surfaces to the atlas. For every
leaf node, we compute an orthogonal bounding frustum that
is aligned with the projection direction and contains the axis-
aligned bounding box (AABB) of the corresponding surface
(see Fig. 2(c)). Next we determine the resolution allocated
to the respective atlas tile, i.e. how densely we sample the
surface. Our goal is to retain a (roughly) uniform sampling
of surfaces, which can be intuitively controlled by the user.
For this, we use a global pixel-to-area ratio ρ to compute the
resolution R of a square tile as: R =

√
ρA2/A⊥, where ρA is

the total number of pixels for representing the surface scaled
by the inverse relative projected area A/A⊥. Although the
actual number of samples used to store the height informa-
tion is usually smaller (as a tile is typically not fully covered
by the projection), we found that this approach still provides
almost uniform sampling of the entire surface (Fig. 3 right).
Complementing the local refinement criteria, the pixel-to-
area ratio is a means to adjust the quality globally.

As we create square tiles, we can easily and tightly pack
them into the atlas. For that we sort them according to their
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Figure 4: Left: the horizontal axis shows the average tile
resolution and individual series depict the dependency of the
ray casting performance on the sampling density. Right: we
identify intervals of the resolution with at least 98% of the
peak performance and approximate the midpoints of these
intervals with a logarithmic function, that is used to select
the optimal tile resolution during the RBVH construction.

descending resolution R and pack them row-wise. Within
each row the tiles are placed from the largest to the smallest
from left to right. Resolution of the first (largest) tile in a row
determines the vertical offset to the next row. For each leaf,
we store a final projection matrix that is computed from the
bounding frustum, tile resolution, and position in the atlas.
Lastly, we transform all primitives using the corresponding
matrices and rasterize them to the atlas. Note that we can use
the atlas to store arbitrary on-surface signals, e.g. normals or
surface colors, by rasterizing them to additional atlas layers.

As we rasterize surfaces from different directions and
at different resolutions, the height fields typically do not
match exactly at their boundaries. To avoid cracks in the
reconstruction, we ensure that the height fields of neigh-
boring surface parts slightly overlap by duplicating primi-
tives within a certain region around the split plane (±5%
in our scenes), and assigning them to both children. Af-
ter rasterization we also apply a dilation filter on the atlas
that creates an additional “safety-border” for all tiles. Note
that this process is common to many atlas-based techniques
(e.g. see [dTWL08]). In order to create meaningful data, we
compute the gradient of the surrounding pixels to ensure that
the dilated surfaces do not create distracting extrusions.

3.4. Analysis of the Subdivision Strategies

In addition to the subdivision strategies, the RBVH has an-
other degree of freedom that trades off between the size of
the node hierarchy and the resolution of tiles: despite a sur-
face may not require subdivision due to the refinement crite-
rion, we might still split it, if it improves the traversal perfor-
mance. Note that this consideration is similar to the choice
of how many primitives should be stored in the leaves of reg-
ular BVHs. To this end, we ran a series of benchmarks (pri-
mary and secondary rays separately) to find a good balance
between the depth of the node hierarchy and the tile reso-
lution. In each test we subdivided the nodes until the atlas
tiles had resolutions lower than a specified threshold. Note
that higher tile resolution results in shallower hierarchies and

c© 2012 The Author(s)
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Scene Heuristic Nodes CPU Build Trac. [MRays/s]
Dragon Median 2999 0.9 s 146.3 = 91%(699 k tris.) SAH 2674 26.8 s 161.3
Happy Buddha Median 8065 1.8 s 138.1 = 82%(1.37 M tris.) SAH 3266 50.6 s 169.3
Beast Median 7639 3.5 s 109.6 = 78%(2.82 M tris.) SAH 4696 118.1 s 140.5
AsianDragon Median 6345 5.9 s 159.9 = 89%(7.22 M tris.) SAH 5227 173.0 s 180.2

Table 1: Number of nodes, CPU construction time (using
1 core), and tracing performance of our RBVH built using
either the spatial median along the longest axis, or the SAH
selecting the best from 32 split candidates along each axis
of the bounding box.

vice versa. Fig. 4 illustrates that the peak performance is ob-
tained with different tile resolutions for different pixel-to-
area ratios (curves in Fig. 4, left), i.e. depending on the sam-
pling density, there is an optimal resolution and we should
refine the nodes until their tiles reach it. To derive the optimal
tile resolution we fit a logarithmic function to the midpoints
of parameter intervals with at least 98% of the peak perfor-
mance. This has proven to be more reliable than fitting to the
absolute maxima. For coherent rays the optimal tile resolu-
tion is 5.76ln(ρ)− 42.99; running the benchmark for sec-
ondary rays yielded 1.23ln(ρ)−0.17. That is, depending on
the application, different parameters yield optimal RBVHs.

We also compare the impact of the SAH and spatial me-
dian heuristics in terms of ray tracing performance and the
number of RBVH nodes in Tab. 1. Although the total num-
ber of nodes created using the spatial median was sometimes
up to 2.5× higher, the ray tracing was always at least 78%,
and 86% on average, of the performance of the RBVH built
with SAH. Considering the build times, it is obvious that the
spatial median is the better choice for dynamic scenes.

3.5. Adaptive, Varying Level of Detail

In Sect. 3.1 and 3.3 we described two means to control the
accuracy and memory requirement of the RBVH. Altering
these parameters also influences the performance: (1) loos-
ening the refinement criterion, e.g. allowing larger cones of
normals, effectively prunes the tree by representing surfaces,
that would be otherwise refined, with a single height field.
This sacrifices uniform sampling (eventually even bijective
projections) for reducing the number of nodes in the tree; (2)
decreasing the sampling density when rasterizing the tiles
reduces memory footprint and speeds up the ray-height field
intersection. Instead of setting these parameters once for the
entire RBVH, we can determine them for every node during
construction. This enables us to adapt the level of detail ac-
cording to a quality function that, for a given point in space,
defines the desired quality (which is mapped to construc-
tion parameters). By this, for instance, we can locally adjust
the accuracy of the RBVH depending on the distance to the
viewer or any other point of interest (Fig. 5).

Point of Interest

Figure 5: RBVHs support level of detail rendering. Here the
refinement criterion is loosened and the tile resolution de-
creases with the distance to the point of interest. The top
inset depicts the boundaries of tiles, the bottom inset shows
the varying sampling density.

In situations when the reconstruction of the entire RBVH
is not desired, we adapt the level of detail by mip-mapping
the atlas, and select an appropriate mip level during traversal.
Since the tree structure does not change, this strategy is sub-
optimal to a full rebuild, but faster and well-working as long
as the atlas tiles do not fuse during the mip-map creation.

4. Hybrid RBVH

RBVHs work best when the input surfaces are highly tessel-
lated and can be faithfully represented by height fields. Obvi-
ously this is not always the case and would restrict the appli-
cability of the RBVH in many cases. To this end, we propose
a hybrid RBVH: whenever the surfaces of a node cannot be
efficiently represented as a height field (e.g., few triangles
with large area, or surfaces with sharp bends) we build the
subtree as a traditional BVH. This creates hybrid RBVHs
where surfaces are partly represented as height fields and
partly by triangles. Fig. 6 shows a car model with surfaces
color-coded according to whether they are represented as
height fields, triangles, or both (similar to two height fields,
triangles and height fields of adjacent nodes may overlap).
For the hybrid RBVH we precompute the surface curva-
ture for the input mesh vertices and resort to triangles when
(1) the percentage of vertices above a certain curvature ex-
ceeds 80%; (2) there are less than 8 triangles in the node.

Figure 6: Rendering with a hybrid RBVH – Left: visualiza-
tion of surfaces represented by height fields (yellow), trian-
gles (green), or both (purple). Right: ray tracing of primary
and secondary rays without any visible artifacts.

c© 2012 The Author(s)
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5. Traversal of the RBVH

Using RBVHs for ray casting is similar to the traversal of
traditional BVHs: the traversal starts at the root node, tests
the ray against the childrens’ bounding boxes, and stores the
nodes to be visited on a stack. In the case of a leaf node, the
ray segment overlapping the leaf’s bounding box is trans-
formed into atlas space using the stored projection matrix.
Then we march along the corresponding line segment and
test for an intersection with the height field using linear plus
secant search (as in [SKU08]). If an intersection is found,
we transform the location back to world space. Note that the
texture coordinates of the intersection can be used to look
up surface attributes from other layers of the atlas. To recon-
struct these attributes without seams, filtering across tiles can
be implemented [LD07], but in our examples, increasing the
resolution of the attribute layer provided sufficient quality.

Retrieving stored on-surface information for a given point
in world space (on the surface) is also easy: we first search
for the leaf node whose bounding box contains this point,
and then transform the point’s coordinates into atlas space
using the projection matrix. Note that due to the overlaps
a surface point may be represented by two or more height
fields. We account for this when writing data into the atlas
and set all the texels corresponding to a single point.

6. GPU Construction

In this section we describe an RBVH construction algorithm
for massively parallel architectures, such as GPUs. We favor
simplicity and fast construction using the inexpensive spa-
tial median for partitioning the primitives. The slightly lower
traversal performance is compensated by the faster construc-
tion, which is beneficial especially for dynamic scenes. As
the refinement criterion we use the more robust projected
surface area, which also requires only one pass over the
primitives (cone of normals needs two).

The construction proceeds in a breadth-first manner start-
ing from the root node (containing all primitives) and creat-
ing nodes level by level. To construct a single level we first
compute the axis-aligned bounding boxes (AABB) and the
average surface orientation for each node in the level. Next
we determine which nodes can be rasterized and remove the
corresponding primitives from the subsequent construction
steps. All other primitives are assigned to the respective child
nodes. We show a pseudocode and meaning of the variables
in Fig. 7 and detail the construction in the next paragraphs.

We start the construction of the node hierarchy by initial-
izing two arrays storing references to the primitives, prim-
Refs, and the node to which every primitive belongs to,
nodeRefs. Since we want the child nodes to slightly over-
lap (to prevent cracks), both arrays have to be large enough
to allow duplicating references (in all our examples 150% of
the original size was sufficient). We also keep track of the
number of nodes N, the number of remaining references R,
and the references stored in the final arrays of leaves F .

BuildNodeHierarchy(primBounds, primNorm, primA)

nodeBounds[],nodeA[] // AABB and surface area of nodes
nodeANorm // sum of area weighted normals in each node
primRefs←{1,2, ...N} // references to primitives
nodeRefs←{1,1, ...1} // references to nodes
finPrimRefs // final array with references to primitives
finNodeRefs // final array with references to nodes
N // (maximum) number of nodes potentially created so far

1 N← 1, R← number of primitives, F ← 0
2 while R > 0 :
3 for all i in [0,R) in parallel :
4 j← primRefs[i]
5 bounds[i]← primBounds[ j]
6 ANorm[i]← primA[ j]∗primNorm[ j]
7 A[i]← primA[ j]

// compute per-node information
8 nodeBounds[N..2N]←reduceByKey(bounds,nodeRefs)
9 nodeANorm[N..2N]←reduceByKey(ANorm,nodeRefs)

10 nodeA[N..2N]← reduceByKey(A,nodeRefs)

// decide whether to split or rasterize
11 rasterize[0..R]← count[0..R]←{0,0, . . .0}
12 for all i in [0,R) in parallel :
13 n← nodeRefs[i]
14 if not requiresSplit(n) and not shouldBeSplit(n) :
15 rasterize[i]← 1
16 else :
17 count[i]← toNChildren(i)
18 child[i]← toWhichChildren(i)

19 finRank[0..R]← scan(rasterize)
20 cRank[0..R]← scan(count)

// filter primitives for rasterization; compact the others
21 for all i in [0,R) in parallel :
22 if rasterize[i] :
23 finPrimRefs[F +finRank[i]]← primRefs[i]
24 finNodeRefs[F +finRank[i]]← nodeRefs[i]
25 else :
26 primRefs[cRank[i]]←primRefs[i]
27 nodeRefs[cRank[i]]←nodeRefs[i]∗2+child[i]&1
28 if child[i] = 3 :
29 primRefs[cRank[i]−1]← primRefs[i]
30 nodeRefs[cRank[i]−1]← nodeRefs[i]∗2

// sort primitives according to the node; update counters
31 sortByKey(primRefs,nodeRefs)
32 update(R,F)
33 N← 2N +1

Figure 7: Parallel algorithm for constructing the upper part
(hierarchy of nodes) of the RBVH.

The construction of the RBVH continues until all remain-
ing references R are processed, i.e. placed in the leaves
(while R > 0, line 2). We assume that, at the beginning of
each iteration, the primitive references are sorted accord-
ing to the node they belong to (stored in nodeRefs), thus
forming segments with the same node reference. In order to
evaluate the refinement criterion, we compute the AABB,
total area, and the sum of area-weighted normals for ev-
ery node. For this, we fill three auxiliary arrays (bounds,
ANorm, and A) with the primitive data (lines 3-7), and per-
form a parallel segmented reduction to obtain a single value
per node (lines 8-10).
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Next, using this per-node information we determine if
primitives will be rasterized or further split, thus going
into new child nodes: we evaluate the splitting criterion
(Sect. 3.1) and optimal subdivision (Sect. 3.4) (line 14) and
mark every primitive either for rasterization (line 15) or
splitting (lines 17-18). In the latter case, we store two flags
per primitive: count contains the number of children the
primitive will go to (1 or 2), and child refers to the actual
children (1 - left child, 2 - right child, 3 - both).

These flags are used to send the primitives to the final ar-
ray (when they are flagged for rasterization) or to the con-
struction array of the next RBVH level. To determine the
locations within these array, we first compute parallel pre-
fix sums (lines 19-20). Note that computing the prefix sum
on the count-array automatically reserves space for duplicat-
ing primitives. Then we again process all primitives: those
flagged for rasterization will be simply appended to the fi-
nal arrays according to the prefix sum (lines 22-24); prim-
itives that go into child nodes are kept in the construc-
tion arrays, but are compacted to remove unused entries
(we double-buffer the arrays to avoid write-after-read haz-
ards). Primitives that are sent to both child nodes (recall that
we accounted for that in the prefix sum) are duplicated in
lines 29-30. Note that we use implicit addressing to avoid
computing and storing pointers during the construction. In
contrast to regular BVHs, the upper part of the RBVH is
very shallow (hundreds or thousands of nodes), and thus
the memory required due to storing a full tree for implicit
addressing is small.

The last step of constructing a single RBVH level is to
sort the references again according to the node indices (for
the next iteration), and to update the number of remaining
primitive references and references in leaves (lines 31-33).

Finalizing the RBVH After the hierarchy construction,
per-node attributes (e.g. the bounding box) are stored in the
node*** arrays. We first separate interior and leaf nodes into
two arrays, and remove the unused entries that were intro-
duced due to the implicit addressing. Lastly, we sort all leaf
nodes according to their tile resolution, compute transfor-
mation matrices and rasterize all primitives referenced by
finPrimRefs as described in Sect. 3.3.

7. Implementation Details

We implemented the RBVH construction on the CPU (for
evaluating the subdivision strategies) and on the GPU. On
the GPU we use CUDA for the hierarchy construction
and ray casting/traversal, and Direct3D 10 for rendering
the primitives into the atlas. For all data parallel primi-
tives (reduceByKey, sortByKey, scan) we used the Thrust
CUDA library [HB11].

After the hierarchy construction, we compact the nodes
into a single tightly packed array, obtaining an efficient rep-
resentation for fast traversal. Each interior node occupies

48+ 8 bytes for both child-AABBs (6 floats each) and ref-
erences to the child nodes (2× 4 bytes). For leaves we only
need to store the projection matrix. As we use orthogonal
projections only, the last row is always {0,0,0,1}, thus we
can store the matrix as 12 floats, or 48 bytes, respectively.

8. Results and Discussion

In this section we evaluate the RBVH regarding its ray cast-
ing performance, level of accuracy and approximate nature,
construction time, and memory requirements. All results
were measured on an Intel Core i7 system running at 2.8GHz
with an NVIDIA GTX 470 GPU.

Quality vs. Performance One key feature of the RBVH is
that it allows trading quality for performance (Fig. 9, please
zoom in using the electronic version). Tab. 2 shows the ren-
dering performance for primary and secondary rays (mea-
sured separately) for five different quality settings (finest
Q0 to coarsest Q4). For benchmarking secondary rays, we
computed environmental lighting by randomly sampling the
hemisphere with 4000 rays per pixel. To compare against a
triangle-based BVH, we integrated Aila and Laine’s [AL09]
GPU ray tracer (which can currently be considered as the
state of the art) into our application to ensure that we cast
exactly the same rays with both acceleration structures.
Tab. 2 also includes the comparison to this method.

As the RBVH is a sample-based structure its ray casting
performance does not depend on the number of triangles. We
adjusted the quality levels such that Q0 is visually indistin-
guishable from the reference for primary rays at a resolution
of 1024×1024. The coarser levels, Q1 to Q4, are appropriate
for secondary rays, or for primary rays if the object is further
from the camera. Here we keep the same distance to better
visualize the approximate nature of the RBVH. For primary
rays and complex scenes (more than 1.5 million triangles in
our examples) the RBVH outperforms the regular BVH, as
it does not store more information than actually necessary.
The absolute performance of the RBVH depends on the cur-
vature of the surfaces; nevertheless, it linearly grows with
decreasing quality for all tested scenes. The relative speed-
up of RBVHs to BVHs increases with the scene size.

Happy BuddhaDragonHand Thai StatueBeast

Figure 8: Test scenes listed in Tab. 2 using an RBVH with
quality level Q2 for primary (top row) and secondary rays
(bottom row); please use the electronic version to zoom in.
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Figure 9: RBVHs can trade performance for quality; shown with close-ups for three different quality settings. The respective
ray casting performance is given in Tab. 2. Left: the RBVHs are used for casting primary rays; the approximate nature becomes
visible for low quality settings such as Q4, but not for high quality settings. Right: objects are rendered using rasterization and
the RBVHs are used for secondary rays only. Note that even for the coarse Q4 settings we obtain satisfying results.

Primary (Coherent) Rays [MRays/s] Diffuse (Incoherent) Rays [MRays/s]
Scene # of triangles BVH Q0 Q1 Q2 Q3 Q4 Speedup BVH Q0 Q1 Q2 Q3 Q4 Speedup
Hand 655 k 178.7 145.3 176.6 209.9 266.0 300.0 0.8 -1.7 55.9 32.5 37.1 44.3 56.6 69.1 0.6 - 1.2
Dragon 699 k 137.2 111.6 139.8 169.4 229.4 287.2 0.8 -2.1 38.2 20.7 21.7 27.6 38.7 53.3 0.5 - 1.4
Happy Buddha 1.37 M 144.6 147.5 183.9 226.2 307.2 386.4 1.0 -2.7 37.2 21.7 24.9 30.5 41.4 54.6 0.6 - 1.5
Children 1.45 M 123.2 121.2 148.8 177.6 232.2 282.8 1.0 -2.3 36.1 21.2 23.6 28.1 39.1 51.0 0.6 - 1.4
Beast 2.82 M 120.4 131.9 163.1 195.4 256.0 298.3 1.1 -2.5 37.8 20.7 23.3 27.8 37.9 47.4 0.5 - 1.3
Asian Dragon 7.22 M 85.9 158.5 190.2 216.1 263.7 304.4 1.8 -3.5 36.7 29.4 31.9 35.1 43.7 53.9 0.8 - 1.5
Thai Statue 10.0 M 122.9 197.4 250.5 302.7 375.4 454.6 1.6 -3.7 32.9 30.7 35.5 41.9 51.7 59.9 0.9 - 1.8
Q0: ρs = 2M, {α = 0.85| ϕ = 45◦} Q1: ρs = 1M, {α = 0.80| ϕ = 50◦} Q2: ρs = 512k, {α = 0.75| ϕ = 55◦}
Q3: ρs = 128k, {α = 0.70| ϕ = 60◦} Q4: ρs = 32k, {α = 0.65| ϕ = 65◦}

Table 2: Detailed performance (in million rays per second) for the scenes shown in Fig. 8 and 9 with different quality settings
(Q0 - finest, Q4 - coarsest). All RBVHs have been constructed using the projected area refinement criterion (except for the Hand
model). The construction parameters are: ρs is the pixel-to-area ratio (all scenes were normalized to a total area of 1 to achieve
equal sampling density), α is the ratio of the projected area, and ϕ denotes the cone of normal. The “BVH” column reports the
performance using Aila and Laine’s [2009] method, “Speedup” shows the range of relative performance of the RBVHs.

Memory Requirements The node hierarchy of the RBVH
is typically shallow and the memory requirements are dom-
inated by the texture atlas. The atlas size directly depends
on the desired sampling density, which enables us to build
compact acceleration structures at the expense of lower ac-
curacy. Tab. 3 shows memory requirements of a triangle-
based BVH, where the geometry is represented by indexed
vertices, and our RBVH for four different models consisting
of 699k (Dragon) to 10.0 million triangles (Thai Statue). In
all cases, the RBVH requires less memory even at the high-
est quality level. The most significant compression can be
observed for the Thai Statue, where Q0 and Q4 require only
4% and 0.2% memory of the regular BVH, respectively. This
is obviously achieved by decoupling from the input geome-
try, which is desirable for removing detail not required for a
given resolution or rendering task.

GPU Construction Our CUDA-based construction algo-
rithm enables using the RBVH for interactive rendering
of fully dynamic scenes. Tab. 4 reports the CPU and GPU

BVH RBVH Q0 Q2 Q4
Scene Tree Tris. Total Tree Atlas Total Total Total
Dragon 14.5 12.0 26.5 0.65 15.2 15.8 3.86 0.38
Happy Bud. 25.5 23.5 48.9 1.04 15.9 17.0 4.13 0.40
Asian Drag. 153.0 123.9 276.9 0.90 12.2 13.1 3.43 0.40
Thai Statue 204.4 171.1 375.5 2.29 14.3 16.6 4.21 0.56

Table 3: Memory consumption (in megabytes) of a triangle-
based BVH and our RBVH with quality levels Q0, Q2, and
Q4. Bold numbers show the total required memory; other
numbers denote the memory required for the tree hierarchy
and the geometry, i.e. triangles or atlas, respectively.

CPU Construction GPU Construction
Scene Q0 Q2 Q4 Q0 Q2 Q4
Dragon 663 530 431 121 101 82
Happy Buddha 1160 901 704 182 152 120
Beast 2395 1758 1472 330 281 239

Table 4: Build times (in milliseconds) of the CPU and GPU
construction using the spatial median and Q0, Q2, and Q4
quality settings.
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a) Glossy refl. + cached diffuse illum.

29 fps11 fps 20 fps60 fps 90 fps

b) Painting on surface c) Photon mapping d) Point cloud e) Point cloud + cached diffuse illum.

Figure 10: RBVHs have advantages over traditional acceleration structures in several applications: (a) two-bounce global
illumination: glossy reflections are computed using 16 secondary rays; diffuse interreflections are progressively computed using
1 sample per frame and cached in the atlas. (b) interactive painting stored directly into the RBVHs atlas. (c) photon mapping
where the RBVH is used for tracing 400k photons, casting shadow and specular rays; caustics are generated using density
estimation of photons stored in the atlas. RBVHs can also be directly created for point cloud representations: (d) and (e) show
ray casting of the Bimba con Nastrino and the Old Town Hall in Hannover point sets; Town Hall rendered with cached diffuse
environmental lighting. All images were rendered at 1280×720 and cropped for this figure. Please see the accompanying video.

construction timings of the RBVH for three different quality
levels. Compared to existing methods for BVH construction
on the GPU, our algorithm seems to build RBVHs for com-
parable scenes faster than the hybrid LBVH [LGS∗09], on
par with HLBVH [PL10] (the original algorithm constructs
an HLBVH for the Dragon model in 81 ms on an NVIDIA
GTX 480), but not as fast as the recently introduced more
efficient HLBVH [GPM11]. As most of the concepts intro-
duced in [GPM11] (e.g. the work queues) are general, we
believe that they can be used to further accelerate our cur-
rent straightforward GPU construction.

9. Applications

In this section we outline some of the applications of
RBVHs. In addition to “just accelerate” ray casting, the rep-
resentation as height fields and the inherent surface parame-
terization allow several applications, that otherwise require
dedicated methods.

Approximate Ray Tracing The RBVH enables fast, ap-
proximate ray tracing with adaptive accuracy. Note that the
term “approximate” does not necessarily mean low-quality:
the renderings obtained with quality settings Q0 and Q1 are
visually almost indistinguishable from triangle-based ren-
dering even for primary rays. However, in certain global il-
lumination computations, e.g. computing indirect lighting or
glossy reflections, the full accuracy is not required. In such
cases, primary rays can be efficiently replaced by rasteriza-
tion, and complemented by an RBVH for secondary rays.
Fig. 10(a) shows an example of using the RBVH for glossy
reflections and caching diffuse interreflections; please see
the accompanying video for more examples using the RBVH
for progressive, cached ambient occlusion and diffuse envi-
ronmental lighting.

Using the Atlas for Texturing Due to the implicit surface
parameterization, RBVHs inherently provide means to store
surface information. For testing purposes, we implemented

two practical applications: on-surface painting and photon
mapping (Fig. 10 (b) and (c)). Both would require additional
parameterizations or data structures with a traditional BVH
(or similar accelerator). With our RBVH we can store sur-
face data by casting rays to determine the corresponding at-
las texture coordinates, e.g. for a photon-surface intersec-
tion, and retrieve the information later during rendering us-
ing the algorithm described in Sect. 5.

Point Rendering The RBVH construction supports all
primitive types that can be rasterized. We built RBVHs for
point clouds obtained by resampling a scanned bust and di-
rectly from a 3D laser (Fig. 10 (d) and (e)). During raste-
rization of the atlas tiles, the point primitives were simply
rendered as discs, but any other more sophisticated point ren-
dering technique can be used to improve the surface quality
(see [GP07] for an overview). In contrast to other accelera-
tors, RBVHs provide ray casting of different primitives in
a unified way.

10. Conclusion and Future Work

In this paper we presented rasterized bounding volume hie-
rarchies for approximate ray casting of triangle and point-
based surface representations with adjustable level of detail.
Our data structure can be efficiently constructed on the CPU
and GPU, and provides an inherent surface parameteriza-
tion for storing data on the surfaces. We described several
means to control the accuracy of the resulting RBVH locally
and globally, and determined optimal construction parame-
ters for primary and secondary rays. Hybrid RBVHs avoid
excessive ray marching and provide high accuracy by partly
keeping the input geometry.

In the future, the RBVH could be further improved
by using more elaborate projections, e.g. a reverse per-
spective [BD06], and signal-specialized tile resolutions. In-
cremental maintenance via local rasterization and refitting
would be an interesting extension, as well as an out-of-core
construction for fast visualization of extremely large scenes.
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