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ABSTRACT
Machine learning techniques just recently enabled dramatic im-
provements in both realtime and offline rendering. In this course,
we introduce the basic principles of machine learning and review
their relations to rendering. Besides fundamental facts like the
mathematical identity of reinforcement learning and the rendering
equation, we cover efficient and surprisingly elegant solutions to
light transport simulation, participating media, noise removal, and
anti-aliasing.
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1 INTRODUCTION
Machine learning can be roughly partitioned into supervised, semi-
supervised, and unsupervised learning. While the predominant ex-
ample for supervised learning are deep neural networks, reinforce-
ment learning stands for reward based learning, and techniques
like clustering allow for learning without feedback.

In fact, machine learning techniques have deep mathematical
relations to rendering, for example, reinforcement learning may be
described by the same integral equation that is known as the render-
ing equation [2], see Fig. 1. Deep neural networks and parametric
mixture models may be used to learn function approximations and
thus complement the classical representations used in computer
graphics. The capability of generalization provided by autoencoder
neural networks may be used for function reconstruction from a
sparse set of samples.
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In this course, we will cover the emerging applications of ma-
chine learning in both realtime and offline rendering.

1.1 Path Guiding by learning Mixture Models
Monte Carlo techniques for light transport simulation may be im-
proved by importance sampling during constructing light transport
paths. Representing such distributions for importance sampling
by a parametric mixture model trained in a progressive manner
from a potentially infinite stream of particles enables recovering
good sampling distributions in scenes with complex lighting within
finite memory. Using these distributions for guiding light transport
paths significantly improves the performance of light transport
simulation algorithms [4], see Fig. 2.

1.2 Learning Distributions for Deep Scattering
Combining Monte Carlo integration and neural networks allows
for efficiently synthesizing images of atmospheric clouds [3]. In-
stead of simulating all light transport during rendering, the spatial
and directional distribution of radiant flux is learned from tens
of cloud exemplars. To render a new scene, visible points of the
cloud are sampled and a hierarchical 3D descriptor of the cloud
geometry with respect to the shading location and the light source
is extracted. The descriptor is input to a deep neural network that
predicts the radiance function for each shading configuration. A
GPU implementation synthesizes images of clouds that are nearly
indistinguishable from the reference solution within seconds to
minutes, see Fig. 3. The method thus represents a viable solution
for applications such as cloud design and, thanks to its temporal
stability, for high-quality production of animated content.

1.3 Rendering using a Recurrent Autoencoder
Reconstructing global illumination at interactive rates given ex-
tremely low sampling budgets is possible using a recurrent de-
noising autoencoder neural network [1]. The addition of recurrent
connections to the network drastically improves temporal stability
for sequences of sparsely sampled input images. The method also
has the desirable property of automatically modeling relationships
based on auxiliary per-pixel input channels, such as depth and nor-
mals. Compared to existing methods that run at comparable speeds,
the approach yields significantly higher quality, see Fig. 4.

1.4 Deep Learning Anti-Aliasing
Supersampling is the de-facto standard technique for generating
high quality antialiased images for off-line rendering, but its high
computational cost is limiting adoption in interactive applications.
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Figure 1: Simple path tracing (left) combined with sim-
ple reinforcement learning (middle) outperforms even the
much more complicated Metropolis light transport algo-
rithm (right) at the same computational budget.

Figure 2: Online learning of how to guide light transport
paths dramatically increases the efficiency of light transport
simulation.

To overcome this issue we amortize the cost of supersampling by
training a convolutional neural network to integrate information
from current and past frames in a temporally coherent fashion. For
sequences rendered with 1 sample per pixel, our network generates
an image quality nearly equivalent to renderings at 16 samples per
pixel at a fraction of the original cost (see Fig. 5).
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Figure 3: Learning distributions allows for the much more
efficient simulation of complex phenomena.

Figure 4: Using recurrent autoencoders enables close to re-
altime light transport simulation (left: input at one sample
per pixel, middle: autoencoder reconstruction, right: refer-
ence).

Figure 5: Realtime high quality temporally stable anti-
aliasing can be learned.
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