
COMPUTER GRAPHICS forum

Denoising Deep Monte Carlo Renderings

Delio Vicini1,2 David Adler1 Jan Novák2 Fabrice Rousselle2 Brent Burley1

1Walt Disney Animation Studios
2Disney Research

(a) KAKAMORA (b) Noisy (c) Denoised (d) Composited

Figure 1: A production scene (a) rendered as a deep noisy image (b), denoised using our method (c), and composited (d) with a deep
volume. Our algorithm removes a significant amount of the input Monte Carlo noise, while preserving the depth separation of the deep
image. © Disney

Abstract
We present a novel algorithm to denoise deep Monte Carlo renderings, in which pixels contain multiple color values, each for a
different range of depths. Deep images are a more expressive representation of the scene than conventional flat images. However,
since each depth bin receives only a fraction of the flat pixel’s samples, denoising the bins is harder due to the less accurate
mean and variance estimates. Furthermore, deep images lack a regular structure in depth—the number of depth bins and their
depth ranges vary across pixels. This prevents a straightforward application of patch-based distance metrics frequently used
to improve the robustness of existing denoising filters. We address these constraints by combining a flat image-space Non-
Local Means filter operating on pixel colors with a deep cross-bilateral filter operating on auxiliary features (albedo, normal,
etc.). Our approach significantly reduces noise in deep images while preserving their structure. To our best knowledge, our
algorithm is the first to enable efficient deep-compositing workflows with denoised Monte Carlo renderings. We demonstrate
the performance of our filter on a range of scenes highlighting the challenges and advantages of denoising deep images.

CCS Concepts
•Computing methodologies → Rendering; Image processing;

1. Introduction

Deep compositing has recently become a commonly used tech-
nique for generating complex production images from multiple
sources [Sey14]. Unlike “flat” images used in traditional composit-
ing, which require manual rotoscoping if the layers are not dis-
tinctly separated into a front to back order, deep images [KBSH13]
may be composited in arbitrary order. To achieve correct depth in-
terleaving, each deep pixel contains multiple values representing
contributions from objects at different camera depths. Having mul-
tiple depth values available to the compositor enables additional
capabilities such as inserting atmosphere [HHHF12] or surfaces,

isolating color corrections and lighting adjustments to particular
depths, or even repositioning elements without re-rendering. See
Figure 2 for a deep-compositing example.

Flat or partially-deep compositing can introduce artifacts as
shown in Figure 3. Similar problems would occur when depth or
world position cues color adjustments. A common solution is to
partition the scene into distinct sets of objects and multiple flat ren-
der passes. But high depth complexity (Figure 3a) could require
many render passes (especially if camera motion affects depth re-
lationships), which is inefficient and complicates the compositing
process. These problems are solved by deep compositing.

© 2018 The Author(s)
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution.
The definitive version can be found at https://doi.org/10.1111/cgf.13533.

https://doi.org/10.1111/cgf.13533

Vicini et al. / Denoising Deep Monte Carlo Renderings

Figure 2: A deep-compositing example: (top to bottom) original
image, denoised deep image, deep bins visualized as 3D points,
final deep composite with depth-based color and lighting adjust-
ments, and inserted atmosphere and volume elements. © Disney

With the advent of physically-based rendering, images—both
flat and deep—produced by modern renderers are often plagued
with residual noise. While sophisticated sampling strategies for
simulating light transport can reduce the noise, avoiding it com-
pletely inside the renderer is nearly impossible due to the slow
convergence rate of Monte Carlo integration. Removing the noise
a-posteriori is thus often the only viable solution, yet an appeal-
ing one as recent denoising algorithms produce high-quality, clean
outputs at a negligible cost compared to increasing sample counts.
However, despite the wide adoption of deep images across the
movie industry, none of the recent denoising algorithms can pre-
serve depth decompositions as all available denoisers operate on
flat data only. Artists are thus left with an unfortunate set of choices:
render surfaces and volumes in a single render and give up com-

positing flexibility, use surface “hold-outs” in the volume render
and vice-versa and face matte line artifacts, or forego denoising
and face potentially prohibitive render times.

The seemingly obvious option of avoiding the need to denoise
deep images is to run the denoiser after compositing on flattened
images. Unfortunately, this suffers from several practical problems:

• Denoising after compositing can introduce significant bias de-
pending on the level of noise in the input (see Figure 4). Such
non-predictive behavior would effectively force the compositing
artists to work on high-quality renders at all times, preventing
them from fast iterations when rerendering is involved.

• Artists would be forced to implement compositing operations on
noisy data, making certain operations (e.g. rotoscoping) signifi-
cantly more challenging.

• Post-compositing denoising may blur added noise-free elements,
such as adjustment masks (like the rectangle in Figure 4), back-
ground image plates, or text.

• Blur operations during compositing induce correlation between
pixels, which can prevent the denoiser from removing fireflies if
run after compositing.

• Variance estimates and auxiliary feature buffers (surface normal,
albedo, etc.) would have to be tracked through individual com-
positing operations. Even if the associated theoretical challenges
were solved, such tracking would still require substantial engi-
neering and computational and memory overhead.

Hence it is important to denoise rendered images before com-
positing and preserve their depth decomposition. In contrast to the
two image-space dimensions, the depth dimension is unstructured
and there are typically no correspondences between depth bins of
neighboring pixels. Applying existing patch-based approaches is
thus challenging as treating depth as merely an extra dimension and
computing distances between 3D neighborhoods, as done in tem-
poral filtering, is not possible. Furthermore, denoising deep images
requires balancing the conflicting interests of versatility and de-
noising robustness: A finer binning may allow for a wider range of
compositing operations, but hinders per-bin statistics and increases
memory requirements. A coarser binning provides more accurate
estimates of color mean and variance in each bin, but reduces artis-
tic flexibility.

In this paper, we present a denoising framework that respects and
leverages deep features in order to denoise deep Monte Carlo ren-
derings. Our goal is to preserve the full expressiveness of the deep
image structure through denoising, while matching the robustness
of filters operating on flattened data—where denoising is better be-
haved thanks to the higher signal-to-noise ratio. To this end, we
combine an image-space Non-Local Means filtering of pixel col-
ors with a deep cross-bilateral filter operating on auxiliary features,
such as albedo and normal.

To demonstrate the robustness of our filter, we compare its de-
noised deep output to nearly noise-free, reference deep renders.
We also analyze potential regressions of denoising deep images:
we compare to a standard denoiser run on flattened images while
avoiding any compositing operations; these can potentially invali-

© 2018 The Author(s)
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution.

Vicini et al. / Denoising Deep Monte Carlo Renderings

(a) Full scene (b) Input (c) Flat (d) Partially deep (e) Fully deep

Figure 3: Why deep compositing is needed: In this render (a), (b), the trees are blurred by depth of field and rendered in front of distant
background objects. The composite inserts a red object between trees and the background, cued by depth. A flat composite from a single
render (c) incorrectly covers part of the trees with the inserted object since the render blends the tree and background depths into a single
value. A partially-deep render has deep alpha and depth but uses the same flat color for all depths. While this does not require rendering and
denoising deep colors, it causes compositing artifacts (d): the background “leaks” through the inserted object because the render blends the
tree and background colors into a single value. A fully-deep render and composite (e) produces the correct result without artifacts. © Disney

Denoised renders @ 16 spp Denoised renders @ 512 spp Inputs for compositing @ 16 spp

(a) Selective color correction (b) Pre-comp (c) Post-comp (d) Pre-comp (e) Post-comp (f) Pre-comp (g) Post-comp

Figure 4: Denoising before versus after compositing: we applied a non-linear color correction to a rectangular region in a flat render of
the KAKAMORA scene in a compositing program and compared two denoising workflows: denoising before compositing (pre-comp), and
denoising after compositing (post-comp) at 16 and 512 samples/pixel. Denoising after compositing may produce undesired artifacts whose
magnitude depends on the sampling rate, e.g. blurring boundaries of elements produced in compositing and brightness changes like the
darkening in (c). Such unpredictable behavior is unacceptable in production environments. Furthermore, denoising after compositing forces
the artists to work with images that suffer from noise (g). Denoising before compositing does not suffer from these drawbacks but requires
preserving the depth decomposition of rendered images, which is the main focus of this paper. © Disney

date the variance and feature buffers. We demonstrate that our deep
denoiser yields comparable performance to a flat-image denoiser
despite operating on unstructured data with a lower signal-to-noise
ratio. Lastly, we discuss limitations and suggest alternative solu-
tions that would not only preserve the depth decomposition but also
yield higher denoising quality.

2. Related Work

Deep Images. The concept of retaining multiple color values re-
solved along the line of sight is also known as multi-layer z-
buffers [Max96], layered depth images [SGHS98], and deep G-
buffers [MMNL16], and was applied to re-rendering scenes from
novel viewpoints [Max96, SGHS98] and fast computation of indi-
rect illumination [NSS10, MMNL16]. To reduce the memory stor-
age, Duan and Li [DL03] proposed to separately compress color
and depth information and analyzed the performance of numerous
coding tools.

Pivotal work by Lokovic and Veach introduced Deep Shadow
Maps [LV00] which store a multiple-sample transmittance func-
tion per pixel in order to achieve shadowing through volumes as

well as motion-blurred or translucent surfaces. Almost immedi-
ately, Deep Shadow Maps gained wide usage in production render-
ing for shadowing but also for transferring arbitrary deep attributes
between render passes. Hillman later introduced deep composit-
ing [HWW10] which was then standardized through additions to
the OpenEXR 2.0 image library [KBSH13] receiving widespread
support from rendering and compositing software.

To keep deep images to manageable sizes, Lokovic and Veach
included the idea of sample compression where samples are col-
lapsed if a subsequent pixel sample falls within an error tolerance
of the extrapolated transmittance from the previous samples. Even
so, files sizes could often be prohibitive in images with high depth
complexity such as hair or fur rendering. Subsequent work further
approximated the transmittance and reduced the complexity using
parallel planes [KN01], per-pixel k-means clustering [MKBR04],
or using a fixed number of depth samples per pixel [YK08] suitable
for GPU rendering. To further reduce file size and also improve
the quality of blending separately rendered hard surfaces, Egstad
et al. [EDL15] collapsed samples belonging to the same geometry
and material, but retained the spatial layout of the samples within
each pixel using a sub-pixel mask.

© 2018 The Author(s)
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution.

Vicini et al. / Denoising Deep Monte Carlo Renderings

Denoising MC Renderings. Over the last decade, denoising of
Monte Carlo renderings has been a very active field of research
with a plethora of publications too large to be reviewed here; for an
overview see the state-of-the-art report by Zwicker et al. [ZJL∗15].
Since we aim to denoise high-end production images, we only dis-
cuss prior art relevant to denoising of arbitrary combinations of
light-transport effects or capable of preserving the information en-
coded in deep images.

Early work by Rushmeier and Ward [RW94] introduced the idea
of using image-space non-linear filters to denoise Monte Carlo
renderings, and McCool [McC99] later proposed to guide the fil-
ter using noise-free auxiliary buffers encoding the scene infor-
mation (surface orientation, albedo and depth). While those tech-
niques were still designed around relatively simple scenes, later
work by Overbeck et al. [ODR09] demonstrated that complex ren-
dering scenarios could also be handled. The focus then gradually
shifted towards increasing the robustness of the denoising pro-
cess, notably by better handling noise in auxiliary buffers [SD12,
LWC12,RMZ13,MIGMM17], leveraging regression models of in-
creasingly high order [BEM11, MCY14, BRM∗16, MMMG16], or
leveraging additional statistics (e.g. histograms and covariance ma-
trices) [DMB∗14,BB17]. Our work builds upon a regression frame-
work used in state-of-the-art image-space denoisers, but extends it
to operate on the unstructured data of deep images.

Several recent works proposed to leverage neural networks to
infer locally optimal parameters for regression models [KBS15],
reconstruct a noise-free image using predicted kernels [BVM∗17,
MBC∗17], or produce the image directly [CKS∗17]. While deep
learning will undoubtedly offset denoising performance in the fu-
ture, the acquisition of sufficiently large training sets (there are cur-
rently none with deep images), the increased memory requirements
due to the deep structure, and their relatively poor generalization
currently permits deployment only in big production houses.

The vast majority of image-space methods are pixel-based, i.e.
they operate on “flat” images, where all samples are first aggre-
gated in a single per-pixel average. While efficient in storage and
oblivious to scene complexity, flat images prevent artists from em-
ploying deep-compositing techniques. A subset of denoising ap-
proaches are sample-based, i.e. they operate on individual sam-
ples, and therefore theoretically allow producing inputs suitable for
deep-compositing pipelines. In practice though, none of these tech-
niques is sufficiently general for production use cases. Light field
reconstructions techniques [LAC∗11, LALD12] handle only a sub-
set of light transport cases, generic methods [HJW∗08,SD12] scale
poorly to the high sampling rates needed for high-end production,
and the recent work of Bauszat et al. [BEJM15] handles only in-
direct illumination and depth of field relying solely on geometric
buffers to guide the filter—this makes it prone to inconsistencies
with high sampling rates.

In our work, we directly denoise deep images, where individual
samples are not aggregated in a single pixel value, but rather splat-
ted into multiple depth bins per pixel. This approach allows com-
bining the benefits of pixel-based and sample-based methods while
retaining the generality and sample-rate scalability of the former,
and the flexibility of the later, thereby enabling for the first time the
use of denoising in deep compositing workflows.

3. Denoising Flat Images with NL-Means

State-of-the-art denoising algorithms all rely on a combination of
noisy color and feature information to guide the denoising pro-
cess. Our work builds on the joint NL-Means filter used in previous
works [RMZ13, MJL∗13, KBS15, ZRJ∗15], which we describe in
this section. Our generalization to deep data follows in Section 4.

As highlighted previously [BRM∗16, MMMG16], a joint NL-
Means filter solves a zero-order regression by computing a de-
noised pixel value as a weighted average of its neighborhood,

Ôp =
1

Cp
∑

q∈Np

w(p,q) Oq, (1)

where Ôp is the filtered value of pixel p, Oq is the noisy input value
of a neighbor pixel q in a square neighborhood Np centered on p,
w(p,q) weights the contribution of q to the filtered value of p, and
Cp is a normalization factor that forces weights sum up to 1.

The joint filter weight is computed as w = min(wO,wF), where
wO is an NL-Means weight computed on the data itself, and wF is
a cross-bilateral weight computed on a set of auxiliary features (the
surface albedo, normal and depth in our case).

NL-Means weight. wO is computed on the noisy input as

wO(p,q) = exp−DO(OPp ,OPq), (2)

where DO(OPp ,OPq) measures the distance between square
patches centered on p and q, according to the noisy input values.
This distance is computed as the average distance between pairs of
pixels in the patches Pp and Pq,

DO(OPp ,OPq) = max

(
0,

1
|P| ∑

n∈P0

dO(p+n,q+n)

)
, (3)

where P0 enumerates the offsets to the pixels within a patch, and

dO(p,q) =
1
|O|

|O|

∑
i=1

‖Oi,p−Oi,q‖2− (Vari,p +min(Vari,p,Vari,q))

ε+ k2
O · (Vari,p +Vari,q)

is the normalized square distance between pixels p and q, |O| is the
number of channels in the noisy image, Oi,p and Vari,p represent
the value and the variance of the i-th channel of pixel p, k2

O is a
user-defined constant that controls the aggressiveness of the filter,
and ε is a constant preventing divisions by zero; we use ε = 10−10.

To further improve the filter output, one can apply the patch-
wise reconstruction proposed by Buades et al. [BCM05], which
performs collaborative filtering by combining neighboring patches
instead of pixels.

Cross-bilateral weight. wF is computed on auxiliary features as

wF (p,q) = exp−DF (Fp,Fq), (4)

with the distance between two pixels computed using the auxiliary
feature f that maximizes the dissimilarity between p and q, i.e.

DF (Fp,Fq) = max
f∈F

d f (p,q). (5)

where F is the set of all auxiliary features.

© 2018 The Author(s)
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution.

Vicini et al. / Denoising Deep Monte Carlo Renderings

The feature distance is computed d f (p,q) as

d f (p,q) =
1
| f |

| f |

∑
j=1

‖ f j,p− f j,q‖2− (Var j,p +min(Var j,p,Var j,q))

k2
f ·max(τ,Var j,p,‖Grad j,p‖2)

,

where | f | is the number of channels of feature f , f j,p and Var j,p
represent the value and the variance of the j-th channel of pixel p,
and ‖Grad j,p‖2 is the squared magnitude of the corresponding gra-
dient clipped to the maximum of a user-defined threshold τ and
variance Var j,p.

In addition to kO, k f and τ, the joint NL-Means filter has two
parameters W and w, such that the size of the neighborhood Np is
W ×W and the size of the patch Pp is w×w.

4. Denoising Deep Images

Our framework for denoising deep images builds on top of the gen-
eralization of joint NL-Means filter described in Section 3. We now
describe how we extended this flat filter to a deep filter, and how
it is used in our pipeline to denoise deep Monte Carlo renderings.
The deep filter operates on images where the depth samples in each
pixel are clustered into discrete bins.

4.1. Deep Joint NL-Means Filter

Our deep joint NL-Means filter retains the dual nature of the flat
filter, that is, we still compute a set of NL-Means weights accord-
ing to the input data, and a set of cross-bilateral weights according
to a set of auxiliary features. The key conceptual difference is that
we now aim at denoising depth bins, as opposed to pixels. Conse-
quently, we rewrite Equation 1 as

Ôpb =
1

Cpb
∑

q∈Np

∑
qd∈Bq

w(pb,qd)Oqd , (6)

where Ôpb is the denoised color of bin b in pixel p, Oqd is the input
color of bin d in pixel q located in the square neighborhood Np
centered on p, Bq lists all the bins of pixel q, w(pb,qd) weights the
contribution of bin qd to the filtered value of bin pb, and Cpb is a
normalization factor ensuring that the weights of all neighboring
bins sum up to 1. The different terms are illustrated in Figure 5.
Similar as in the flat filter, the weight w(pb,qd) is the minimum of
a data weight wO(pb,qd) and a feature weight wF (pb,qd).

Given the unstructured nature of deep image data, NL-Means
weights cannot be computed directly on the bin values. Instead,
our deep filter uses alpha-weighted NL-Means weights computed
on the flattened deep data

wO(pb,qd) = wO(p,q) ·wα(qd), (7)

where wα(qd) is the effective alpha of the neighbor bin that mea-
sures its relative contribution to pixel q. This effective alpha equals
the number of samples in a bin divided by the total number of sam-
ples in a given pixel. For the n-th bin, the effective alpha wα(pn)
is computed recursively using the cumulative effective alpha of the
previous n−1 bins and the stored n-th bin alpha α(pn),

wα(pn) =

(
1−

n−1

∑
i=1

wα(pi)

)
α(pn). (8)

w(p
b,

qd)

qd

Np pby

p

q

x

Bq

z

Figure 5: Illustration of the terms used in Equation 6. This exem-
plary scene depicts the deep image structure for a blue object in
front of a yellow background object. The color of bin qd in pixel q
is splatted into bin qb of pixel p using the weight w(pb,qd).

Here, the n-th bin alpha α(pn) is an alpha value corresponding to
an over compositing alpha weight as specified by the OpenEXR 2.0
deep image file format [KBSH13].

Our proposed alpha-weighted deep NL-Means filter is a general-
ization of the flat NL-Means filter, which ensures that flattening the
filtered deep data yields an identical result to filtering the flattened
data. Mathematically, this can be shown by rewriting the filtered
flat pixel value Ôp as

Ôp =
1

Cp
∑

q∈Np

wO(p,q) Oq (9)

=
1

Cp
∑

q∈Np

wO(p,q)

[
∑

qd∈Bq

wα(qd)qd

]
(10)

=
1

Cp
∑

q∈Np

∑
qd∈Bq

wO(p,q) ·wα(qd)qd (11)

=
1

Cp
∑

q∈Np

∑
qd∈Bq

wO(pb,qd)qd = Ôpb (12)

where the second equality used the definition of the effective alpha
weights to expand the pixel value Oq and the last equality used
the definition of wO(pb,qd). When filtering a deep image using the
alpha-weighted NL-means weights wO(pb,qd), all bins in pixel p
are assigned the same color Ôpb and thus the flattened filtered deep
image is identical to a filtered flat image. The results are however
identical only with respect to the NL-Means weights, but in practice
we also consider the cross-bilateral weights. These are computed
differently in the deep and flat denoisers, which explains why the
resulting outputs differ as can be seen in Figure 8.

Figure 6 illustrates how our alpha-weighted NL-Means filter re-
solves the artifacts caused by directly applying the standard NL-
Means weights to the deep data.

Extending the cross-bilateral weights to the deep data is rela-
tively straightforward, apart for the computation of the auxiliary
feature gradient, which again is ill-defined because of the unstruc-
tured nature of the data. As before, we use a hybrid approach com-
puting the feature distances according to the bin values, but the

© 2018 The Author(s)
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution.

Vicini et al. / Denoising Deep Monte Carlo Renderings

(a) Input (b) No alpha weights (c) Alpha weights

Figure 6: Denoised results both without and with the effective al-
pha weights. Without using the effective alpha weights, artifacts
can occur where bins have a very small alpha (e.g. near edges).
We disabled feature weights in this figure to make the artifact more
visible. The artifact is less pronounced when using features since
features reduce the contribution of these very different bins.

feature gradient according to the flattened data,

d f (pb,qd)=
1
| f |

| f |

∑
i= j

‖ f j,pb− f j,qd‖−(Var j,pb+min(Var j,pb ,Var j,qd)

k2
f ·max(τ,Var j,pb ,‖Grad j,p‖2)

.

The final cross-bilateral weight is computed using Equations (4)
and (5) replacing p and q by pb and qd , respectively.

4.2. Deep Denoising Framework

Given the deep NL-Means filter defined in Section 4.1, we can now
setup our denoising framework. As input, we take a single deep
multichannel EXR, with the following set of information per bin:
the mean and variance of the color, albedo, normal and depth sam-
ples, as well as the alpha value. The input data is actually split into
half buffers as proposed by Rousselle et al. [RKZ12], each of which
stores one half of the samples, which allows us to estimate the mean
squared error (MSE) of the filtered output.

Auxiliary Feature Prefiltering. Despite the binning procedure
(see Appendix A for details) reducing noise in feature buffers
that stems from variation in depth, the features may still suffer
from noise. For example, consider a textured quad sliding within
its plane. Multiple texture values will project into the same pixel
(and bin) and since the time domain is sampled stochastically,
the albedo feature will suffer from noise. Similarly to previous
works [RMZ13,KBS15,ZRJ∗15,MMMG16] we therefore prefilter
the albedo and normal using our joint deep filter. For the albedo,
the alpha-weighted NL-Means weights are computed using the flat-
tened albedo bins with the depth values acting as an auxiliary fea-
ture. The normal buffer is processed analogously. We use the fol-
lowing parameters in this preprocessing step: kO = 1.50, k f = 0.05,
τ = 0.001, W = 5 and w = 3.

Note that we do not prefilter the alpha values in our framework,
as these are quite sensitive. This ensures consistent deep composit-
ing operations, at the cost of some residual noise artifacts.

Color Filtering. Given the pre-filtered albedo and normal values,
we now turn to denoising the color values of the bins. For this, we
use a filter bank of three candidate deep filters with the following

parameters: 1) kO = 0.45, k f = 0.7; 2) kO = 0.6, k f = 2.0; 3) kO =

104, k f = 2.0. All three scales use τ = 0.001, W = 9 and w = 3.

We then linearly combine these three candidate filters on a per-
pixel basis according to their estimated MSE. Note that we compute
the statistics on the flattened deep data, to increase their robustness.
For the MSE estimation, we used the approach proposed by Bitterli
et al. [BRM∗16],

MSE[F]≈ 1
2

(
(F0−C1)

2 +(F1−C0)
2
)
−2Var [C]−Var [F]

(13)
where F denotes the candidate filter output, F1 and F2 are the fil-
tered half buffers and C is the noisy input, which is split in half
buffers C0 and C1. Similar to previous work [RMZ13], we first fil-
ter the noisy MSE estimates using a flat NL-means filter and then
combine the candidate filters using a selection map computed on
the filtered MSE estimates.

5. Implementation Details

We modified the open-source Mitsuba renderer [Jak10] to output
all the required features and half buffer data as deep images. For
the RUNNING MAN and KAKAMORA scenes, we used Disney’s
Hyperion renderer.

5.1. Rendering Deep Images

We generate deep images by first running a depth-only rendering
prepass in which we determine the depth binning of each pixel and
an alpha value for each bin. We then render the deep image using
the same random seed and assign samples to the nearest bin in abso-
lute depth distance. Using a depth prepass allows us to pre-allocate
a fixed-size frame buffer and avoids the need to capture and sort all
samples which could otherwise be prohibitive, especially given the
large number of render output channels typically produced.

Ideally, both prepass and main render pass would use the same
number of samples per pixel, such that the depth distributions of
the prepass and the main render pass match. In practice this is not
necessarily the case, as we may want to use adaptive sampling in
the main render pass and the prepass does not have the adaptive
sampling information (e.g. per-pixel variance estimates of the color
samples). This discrepancy can potentially increase the depth vari-
ance in some of the bins.

To determine the bin layout from the prepass, we sort the depth
samples for each pixel and collapse consecutive samples that fall
within a depth threshold (see Appendix A for pseudocode). The
depth threshold for the first bin in each pixel is determined by pro-
jecting the screen size of the pixel to each sample’s scene depth,
thus making the depth quantization comparable to the pixel quan-
tization. To constrain depth complexity, we scale the threshold at
subsequent bins by a factor of bE where b is the bin number and
E is a user parameter. We find a default value of E = 2 to work
well in a variety of scenes, providing good separation between lay-
ers while keeping the number of bins low even in scenes with high
depth complexity. In the KAKAMORA scene, for example, there are
an average of 1.66 bins per pixel.

© 2018 The Author(s)
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution.

Vicini et al. / Denoising Deep Monte Carlo Renderings

5.2. Decomposition and Irradiance Factorization

During rendering, we decompose the input into a pair of diffuse
and specular components, based on the roughness of the sampled
BSDF lobe, such that summing these two components yields back
the full color. As shown by Zimmer et al. [ZRJ∗15], this type of de-
composition allows tailoring the filter behavior to the distinct noise
characteristic and structure of each component, leading to higher
quality denoised results. For the diffuse component (but not the
specular one), we also make use of the effective irradiance pro-
posed by Zimmer et al. We compute it directly on the deep data, by
dividing the noisy diffuse color of each bin by its noisy albedo (off-
set by a small constant to prevent division by zero). Computing the
effective irradiance directly on the deep data is crucial, as the flat-
tened albedo is not necessarily representative of each bin in a pixel.
The denoised diffuse component is obtained by multiplying back
the denoised irradiance of each bin by its denoised albedo, ensur-
ing better preservation of the fine albedo details than when directly
filtering the diffuse color. The final result is then simply the sum of
the denoised diffuse and specular components.

5.3. Variance Prefiltering

For the auxiliary features, we directly make use of the sample
mean variance. However, for the color values, we instead use the
two-buffer variance computed across our two half buffers, as pro-
posed by Rousselle et al. [RMZ13]. Using the two-buffer variance
is needed for renderings produced with correlated samples, where
the sample mean variance may overestimate the actual estimator
variance. In practice, most rendering systems use low-discrepancy
or stratified random samples, which are highly correlated [PJH16].
Additionally, using two buffers allows us to robustly compute the
variance of the effective diffuse irradiance, which would otherwise
be challenging given that the diffuse color and albedo are not only
both noisy, but also correlated. Since the two-buffer variance es-
timate is itself very noisy, we prefilter it using a Gaussian kernel
with σ = 0.5, and then use the maximum of the noisy and blurred
two-buffer variances to guide our deep filter.

6. Results

We implemented our filter on the CPU using a mixture of Python
and C++ code. Partially multithreaded filtering performance is
around 12 minutes per megapixel, where the prefiltering of the fea-
tures takes around one minute and scale selection around 10 sec-
onds. Performance was measured on an Intel i7-4930K processor,
running 6 cores (12 threads) at 3.4Ghz.

In Figure 7, we demonstrate how our deep filter preserves the
structure of the input data. We insert a clipping plane in each deep
image and visualize bins that are in front of the plane (RUNNING

MAN, SIBENIK, KAKAMORA) and behind the plane (SPONZA).
The reference solutions use the same set of bins as the noisy in-
put, but estimate radiance with much higher SPP to suppress the
noise. Due to the stochastic nature of computing primary visibility,
some bins receive a very low number of samples (see pixels around
the fuzzy border in the SPONZA insets). Our deep denoiser filters
these bins robustly by finding similar bins in other pixels producing
nearly noise-free results even in these difficult scenarios.

Figure 1 illustrates a deep compositing result where a deep ren-
der of a smoke is inserted into a deep render of the KAKAMORA

scene. The deep compositing pipeline allows the artist to change
the placement of the smoke very quickly without having to reren-
der holdouts whenever the position of the smoke is adjusted.

In Figure 8, we assess the quality of our deep filter with respect to
prior work. Given that there are currently no alternative deep-image
denoisers, we opted to perform the comparison against flattened
data, that is, we compare the result of flattening the output of our
deep denoiser to the result of denoising the flattened input. We de-
noise raw renders without any compositing operations, since the flat
denoiser inputs are otherwise generally ill-defined. For instance,
problematic cases would involve updating the per-pixel variances
following a non-linear color correction, or handling composited
material for which the auxiliary features (variance, surface normal,
etc.) are not defined. Avoiding any compositing for this particu-
lar comparison conveniently sidesteps these difficulties. We use the
RDFC filter [RMZ13] as the baseline, which builds on a similar
joint NL-Means scheme and yields results that are close to the cur-
rent state of the art in regression-analysis denoising [BRM∗16].
We implemented RDFC in the same codebase as our deep filter,
and run it on the same decomposed input (including irradiance
factorization); our implementation requires about two minutes per
megapixel. The comparison demonstrates that our deep filter offers
visually similar results to RDFC. The richer input allows our filter
to better preserve some details, such as the character’s fur in the
KAKAMORA scene. However, since filtering unstructured bins is
inherently more difficult than filtering the regular structure of pix-
els, occasional regressions in quality may appear and the overall
rMSE is thus slightly higher. In particular, our deep filter tends to
leave more residual noise, partially because our auxiliary feature
prefiltering uses conservative settings to prevent excessive blurring
across bins within the target pixel.

7. Limitations and Future Work

Our filter has a number of limitations that could be addressed in
future work.

Pixel-based weights. Our deep joint NL-Means filter uses a mix-
ture of pixel-based color weights and bin-based feature weights.
This hybrid approach is crucial, since the per-bin color information
is simply not sufficiently reliable, but it hinders our deep filter. In
particular, our color weights cannot accommodate conflicting con-
straints, such as the need of filtering a noisy motion blurred object
in front of a noise-free static background, even though the deep
nature of our filter in theory affords it. This limitation is however
mitigated by the bin-based feature weights. An interesting avenue
for future research would be to operate on individual samples and
leverage advanced machine learning approaches, e.g. deep neural
network, to avoid the need for storing all samples.

Computational overhead. Working on sparse, binned data incurs
a significant overhead: we have multiple bins to process per pixel,
and the neighborhood of each bin must be explicitly assembled on
a per-bin basis. Our filter cost is therefore, in contrast with pixel-
based image-space filters, not independent of scene complexity, al-
though it is independent of the sampling rate.

© 2018 The Author(s)
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution.

Vicini et al. / Denoising Deep Monte Carlo Renderings

RUNNING MAN Input Ours Reference
rMSE: 0.2031 0.0136

SIBENIK Input Ours Reference
rMSE: 2.4227 0.1361

KAKAMORA Input Ours Reference
rMSE: 4.9134 0.6875

SPONZA Input Ours Reference
rMSE: 0.5090 0.0472

Figure 7: Comparisons of deep images showing insets with noisy inputs (128 SPP), outputs of our deep denoiser, and references, all clipped
at a certain depth. The references use the same depth bins as the noisy input but higher SPP. The relative mean squared error (rMSE) is
computed on the flattened images to quantify filtering quality. All error values are scaled by 100. © Disney

Noisy alpha. To ensure sharp compositing boundaries, we cur-
rently do not denoise the alpha value of each bin. While the al-
pha value noise is typically of small magnitude, it is sometimes
very noticeable in the denoised output, e.g. with strong depth of
field. To address this issue, a simple solution is to oversample the
alpha value by tracing additional camera rays. Those rays have a
relatively small overhead since we only record the surface depth
and terminate at the first intersection, whereas production render-
ing cost is dominated by indirect bounces and shading computa-
tion. In Figure 9, we illustrate how alpha supersampling resolves
the residual noise artifacts, but a robust alpha-denoising solution
would nonetheless be preferable. None of the results in our paper
make use of alpha supersampling.

Noisy features. Our depth-based binning process ensures that
each bin depth value is relatively noise-free, however the albedo
and normal values still suffer from noise. Robust prefiltering of
albedo and normal however is challenging for deep data, and our
approach of using conservative settings is clearly suboptimal.

8. Conclusions

We presented a denoising algorithm for deep images, which
achieves similar quality to a recent image-space filter while pre-
serving the deep data structure. Despite the relatively straightfor-
ward design of our deep filter and its limitations, our results demon-
strate the feasibility of denoising deep Monte Carlo renderings. The

© 2018 The Author(s)
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution.

Vicini et al. / Denoising Deep Monte Carlo Renderings

RUNNING MAN Input RDFC (flat) Ours (deep) Reference
rMSE: 0.2031 0.0127 0.0136

KAKAMORA Input RDFC (flat) Ours (deep) Reference
rMSE: 4.9134 0.6852 0.6875

SIBENIK Input RDFC (flat) Ours (deep) Reference
rMSE: 2.4227 0.1128 0.1361

CLASS ROOM Input RDFC (flat) Ours (deep) Reference
rMSE: 2.0569 0.1293 0.1316

Figure 8: Comparisons of flattened noisy inputs (128 SPP, CLASS ROOM using 256 SPP), flattened inputs denoised with RDFC, and deep
inputs that are denoised with our filter and then flattened. The relative mean squared error (rMSE) is computed on the flattened images to
quantify filtering quality. All error values are scaled by 100. Our denoiser performs comparably to RDFC but allows preserving the deep
structure of deep images. These comparisons are on raw data, i.e. without any compositing, to avoid the difficulties of tracking variance and
feature buffers through compositing operations. © Disney

approach presented here represents the first step towards integrating
denoising into modern deep-compositing workflows, which could
be further extended in future work, e.g. by improving the binning
strategy, reducing the computational overhead of processing deep
data, improving the robustness of feature prefiltering, using the
deep data to drive a more finely-tuned adaptive sampling scheme,
using volumetric deep samples to improve compositing for vol-
umes, or extending this type of denoising to handle rendered light
fields. Most importantly, however, our paper introduces a new per-
spective on the denoising problem and shall stimulate future publi-
cations to consider the more challenging scenario of denoising deep
images to ensure compatibility with production environments that
rely on deep compositing.

Acknowledgments

We thank the anonymous reviewers for their critical feedback. We
thank Marios Papas for useful discussions and proofreading. We
also would like to thank Greg Nichols and Ralf Habel for their work
on the sample clustering algorithm.

We thank BlendSwap user NovaZeeke for the CLASS ROOM

scene, Marko Dabrovic for the SPONZA and SIBENIK scenes and
Alex Nijmeh and other artists at Walt Disney Animation Studios
who worked on the KAKAMORA and RUNNING MAN scenes.

rMSE: 0.5106 0.5106 0.5066

In
pu

t
D

en
oi

se
d

rMSE: 0.0321 0.0478 0.0338
Flat filter Deep filter Deep filter
128 SPP 128 SPP 128 SPP (HQ Alpha)

Figure 9: Denoising results on the SPONZA scene using both low-
and high-quality alpha values. Even moderate alpha noise can
cause noticeable noise in the denoised color result. Using higher
quality alpha (1024 SPP) prevents this residual noise.

References

[BB17] BOUGHIDA M., BOUBEKEUR T.: Bayesian collaborative denois-
ing for Monte Carlo rendering. Comp. Graph. Forum (Proc. EGSR) 36,
4 (2017), 137–153. 4

[BCM05] BUADES A., COLL B., MOREL J.-M.: A review of image de-
noising algorithms, with a new one. Multiscale Modeling & Simulation
4, 2 (2005), 490–530. 4

© 2018 The Author(s)
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution.

Vicini et al. / Denoising Deep Monte Carlo Renderings

[BEJM15] BAUSZAT P., EISEMANN M., JOHN S., MAGNOR M.:
Sample-based manifold filtering for interactive global illumination and
depth of field. Comp. Graph. Forum 34, 1 (2015), 265–276. 4

[BEM11] BAUSZAT P., EISEMANN M., MAGNOR M.: Guided image
filtering for interactive high-quality global illumination. Comp. Graph.
Forum 30, 4 (2011), 1361–1368. 4

[BRM∗16] BITTERLI B., ROUSSELLE F., MOON B., IGLESIAS-
GUITIÁN J. A., ADLER D., MITCHELL K., JAROSZ W., NOVÁK J.:
Nonlinearly weighted first-order regression for denoising Monte Carlo
renderings. Comp. Graph. Forum (Proc. EGSR) 35, 4 (June 2016), 107–
117. 4, 6, 7

[BVM∗17] BAKO S., VOGELS T., MCWILLIAMS B., MEYER M.,
NOVÁK J., HARVILL A., SEN P., DEROSE T., ROUSSELLE F.: Kernel-
predicting convolutional networks for denoising Monte Carlo renderings.
ACM Trans. Graph. (Proc. SIGGRAPH) 36, 4 (2017), 97:1–97:14. 4

[CKS∗17] CHAITANYA C. R. A., KAPLANYAN A., SCHIED C., SALVI
M., LEFOHN A., NOWROUZEZAHRAI D., AILA T.: Interactive recon-
struction of noisy Monte Carlo image sequences using a recurrent au-
toencoder. ACM Trans. Graph. (Proc. SIGGRAPH) 36, 4 (2017). 4

[DL03] DUAN J., LI J.: Compression of the layered depth image. IEEE
Transactions on Image Processing 12, 3 (March 2003), 365–372. 3

[DMB∗14] DELBRACIO M., MUSÉ P., BUADES A., CHAUVIER J.,
PHELPS N., MOREL J.-M.: Boosting Monte Carlo rendering by ray
histogram fusion. ACM Trans. Graph. 33, 1 (Feb. 2014), 8:1–8:15. 4

[EDL15] EGSTAD J., DAVIS M., LACEWELL D.: Improved deep image
compositing using subpixel masks. In Proceedings of Digital Production
Symposium (2015), pp. 21–27. 3

[HHHF12] HANIKA J., HILLMAN P., HILL M., FASCIONE L.: Camera
space volumetric shadows. In Proceedings of Digital Production Sym-
posium (2012), pp. 7–14. 1

[HJW∗08] HACHISUKA T., JAROSZ W., WEISTROFFER R. P., DALE
K., HUMPHREYS G., ZWICKER M., JENSEN H. W.: Multidimensional
adaptive sampling and reconstruction for ray tracing. ACM Trans. Graph.
27, 3 (Aug. 2008), 33:1–33:10. 4

[HWW10] HILLMAN P., WINQUIST E., WELFORD M.: Compositing
“avatar”. SIGGRAPH 2010 Talks, 2010. 3

[Jak10] JAKOB W.: Mitsuba renderer, 2010. 6

[KBS15] KALANTARI N. K., BAKO S., SEN P.: A machine learning
approach for filtering Monte Carlo noise. ACM Trans. Graph. (Proc.
SIGGRAPH) 34, 4 (July 2015), 122:1–122:12. 4, 6

[KBSH13] KAINZ F., BOGART R., STANCZYK P., HILLMAN P.: Tech-
nical introduction to OpenEXR, 2013. 1, 3, 5

[KN01] KIM T.-Y., NEUMANN U.: Opacity shadow maps. In Proc. of
Eurographics Workshop on Rendering Techniques (London, UK, 2001),
Springer, pp. 177–182. 3

[LAC∗11] LEHTINEN J., AILA T., CHEN J., LAINE S., DURAND F.:
Temporal light field reconstruction for rendering distribution effects.
ACM Trans. Graph. (Proc. SIGGRAPH) 30, 4 (July 2011), 55:1–55:12.
4

[LALD12] LEHTINEN J., AILA T., LAINE S., DURAND F.: Reconstruct-
ing the indirect light field for global illumination. ACM Trans. Graph.
(Proc. SIGGRAPH) 31, 4 (July 2012), 51:1–51:10. 4

[LV00] LOKOVIC T., VEACH E.: Deep shadow maps. In Annual Con-
ference Series (Proc. SIGGRAPH) (New York, NY, USA, 2000), ACM
Press/Addison-Wesley Publishing Co., pp. 385–392. 3

[LWC12] LI T.-M., WU Y.-T., CHUANG Y.-Y.: Sure-based optimiza-
tion for adaptive sampling and reconstruction. ACM Trans. Graph. (Proc.
SIGGRAPH Asia) 31, 6 (Nov. 2012), 194:1–194:9. 4

[Max96] MAX N.: Hierarchical rendering of trees from precomputed
multi-layer z-buffers. In Proc. of Eurographics Workshop on Rendering
Techniques (London, UK, 1996), Springer, pp. 165–174. 3

[MBC∗17] MILDENHALL B., BARRON J. T., CHEN J., SHARLET D.,
NG R., CARROLL R.: Burst Denoising with Kernel Prediction Net-
works. ArXiv e-prints (Dec. 2017). 4

[McC99] MCCOOL M. D.: Anisotropic diffusion for Monte Carlo noise
reduction. ACM Trans. Graph. 18, 2 (Apr. 1999), 171–194. 4

[MCY14] MOON B., CARR N., YOON S.-E.: Adaptive rendering based
on weighted local regression. ACM Trans. Graph. 33, 5 (Sept. 2014),
170:1–170:14. 4

[MIGMM17] MOON B., IGLESIAS-GUITIAN J. A., MCDONAGH S.,
MITCHELL K.: Noise reduction on g-buffers for Monte Carlo filtering.
Comp. Graph. Forum (2017), 600–612. 4

[MJL∗13] MOON B., JUN J. Y., LEE J., KIM K., HACHISUKA T.,
YOON S.-E.: Robust image denoising using a virtual flash image for
Monte Carlo ray tracing. Comp. Graph. Forum 32, 1 (2013), 139–151. 4

[MKBR04] MERTENS T., KAUTZ J., BEKAERT P., REETH F. V.: A
self-shadow algorithm for dynamic hair using density clustering. In Ren-
dering Techniques (Proc. EG Symposium on Rendering) (Aire-la-Ville,
Switzerland, Switzerland, 2004), Eurographics Association, pp. 173–
178. 3

[MMMG16] MOON B., MCDONAGH S., MITCHELL K., GROSS M.:
Adaptive polynomial rendering. ACM Trans. Graph. (Proc. SIGGRAPH)
(2016). 4, 6

[MMNL16] MARA M., MCGUIRE M., NOWROUZEZAHRAI D., LUE-
BKE D.: Deep g-buffers for stable global illumination approximation. In
HPG (June 2016). 3

[NSS10] NIESSNER M., SCHÄFER H., STAMMINGER M.: Fast indirect
illumination using layered depth images. The Visual Computer 26, 6-8
(2010), 679–686. 3

[ODR09] OVERBECK R. S., DONNER C., RAMAMOORTHI R.: Adap-
tive wavelet rendering. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 28,
5 (2009), 140–1. 4

[PJH16] PHARR M., JAKOB W., HUMPHREYS G.: Physically Based
Rendering: From Theory to Implementation (3rd ed.), 3rd ed. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, Oct. 2016. 7

[RKZ12] ROUSSELLE F., KNAUS C., ZWICKER M.: Adaptive rendering
with non-local means filtering. ACM Trans. Graph. (Proc. SIGGRAPH
Asia) 31, 6 (Nov. 2012), 195:1–195:11. 6

[RMZ13] ROUSSELLE F., MANZI M., ZWICKER M.: Robust denois-
ing using feature and color information. Comp. Graph. Forum (Proc. of
Pacific Graphics) 32, 7 (2013), 121–130. 4, 6, 7

[RW94] RUSHMEIER H. E., WARD G. J.: Energy preserving non-linear
filters. In Annual Conference Series (Proc. SIGGRAPH) (New York, NY,
USA, 1994), ACM, pp. 131–138. 4

[SD12] SEN P., DARABI S.: On filtering the noise from the random pa-
rameters in Monte Carlo rendering. ACM Trans. Graph. 31, 3 (June
2012), 18:1–18:15. 4

[Sey14] SEYMOUR M.: The art of deep compositing, 2014. 1

[SGHS98] SHADE J., GORTLER S., HE L.-W., SZELISKI R.: Layered
depth images. In Annual Conference Series (Proc. SIGGRAPH) (New
York, NY, USA, 1998), ACM, pp. 231–242. 3

[YK08] YUKSEL C., KEYSER J.: Deep Opacity Maps. Comp. Graph.
Forum (2008). 3

[ZJL∗15] ZWICKER M., JAROSZ W., LEHTINEN J., MOON B., RA-
MAMOORTHI R., ROUSSELLE F., SEN P., SOLER C., YOON S.-E.: Re-
cent advances in adaptive sampling and reconstruction for Monte Carlo
rendering. Comp. Graph. Forum (Proc. Eurographics) 34, 2 (May 2015),
667–681. 4

[ZRJ∗15] ZIMMER H., ROUSSELLE F., JAKOB W., WANG O., ADLER
D., JAROSZ W., SORKINE-HORNUNG O., SORKINE-HORNUNG A.:
Path-space motion estimation and decomposition for robust animation
filtering. Comp. Graph. Forum (Proc. EGSR) 34, 4 (June 2015). 4, 6, 7

© 2018 The Author(s)
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution.

Vicini et al. / Denoising Deep Monte Carlo Renderings

CLUSTERSAMPLES(depth[], ppuScale)

1 if depth.size() == 0
2 return
3 depth = SORT(depth)
4 deltas = []
5
6 // Compute relative depth deltas metric
7 for k = 0 to depth.size() - 1
8 deltas[k] = (depth[k + 1] - depth[k]) * (ppuScale / depth[k])
9 deltas[depth.size() - 1] = 0

10
11 // Cluster samples into bins
12 bins = []
13 k = 0
14 while k < depth.size()
15 // Start a new a bin for sample k
16 bins.add(depth[k])
17 threshold = (bins.size()+1)E

18
19 // Advance k until sum > threshold
20 sum = deltas[k]
21 k++
22 while k < depth.size()
23 sum += deltas[k];
24 if sum > threshold
25 break
26 k++
27 return bins

Figure 10: Pseudocode for the deep sample clustering heuristic.

Appendix A: Depth Sample Clustering

Our depth sample clustering heuristic is outlined the pseudocode
in Figure 10. This algorithm takes the samples from the depth
prepass as an input and outputs an array of depth bins in each pixel.

First we sort the sampled depth values in each pixel.

Next we compute the relative depth deltas metric between subse-
quent pairs of depth samples: the absolute depth difference is scaled
by the perspective projection of ppuScale, which measures the size
of a 1-unit quad one unit away from the camera. The metric thus
indicates how large a cube spanning the two depth samples would
appear on the image plane. This metric makes our clustering more
aggressive farther from the camera and makes it independent of
scene scale.

Finally, we iteratively cluster samples into the same bin until the
sum of relative depth differences is greater than threshold, at which
point we start a new bin. The threshold grows larger as we allocate
more bins, penalizing creating an excessive number of bins. The
constant E controls how aggressively depth samples are merged. In
our implementation we use a value of E = 2, which seems to work
well in a variety of scenes

© 2018 The Author(s)
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution.

