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Figure 1: Image-space control variates allow leveraging coherence in renderings. We show here an example of our re-rendering application,
leveraging temporal coherence. We used 1024/64 samples per pixel for rendering the control/difference images, and our final reconstruction
(Ours, far right) offers a significant improvement over standard Path tracing, despite the magnitude of the changes.

Abstract

We explore the theory of integration with control variates in the
context of rendering. Our goal is to optimally combine multiple
estimators using their covariances. We focus on two applications,
re-rendering and gradient-domain rendering, where we exploit co-
herence between temporally and spatially adjacent pixels. We pro-
pose an image-space (iterative) reconstruction scheme that employs
control variates to reduce variance. We show that recent works on
scene editing and gradient-domain rendering can be directly formu-
lated as control-variate estimators, despite using seemingly differ-
ent approaches. In particular, we demonstrate the conceptual equiv-
alence of screened Poisson image reconstruction and our iterative
reconstruction scheme. Our composite estimators offer practical
and simple solutions that improve upon the current state of the art
for the two investigated applications.

Keywords: Monte Carlo integration, control variates, re-
rendering, gradient-domain rendering

Concepts: •Computing methodologies→ Ray tracing;

1 Introduction

Physically-based image synthesis often employs Monte Carlo (MC)
integration, in particular path tracing, which has a number of at-
tractive properties: the algorithm is conceptually simple, can be
used to produce photo-realistic images, offers a predictable con-
vergence rate, allows for rapid iterations, and can directly scale
to final renders given more computation time. The main down-
side of MC rendering is that the computational cost of producing
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noise-free renders is often prohibitively expensive. Consequently, a
number of techniques have been proposed to exploit the spatial and
temporal coherence in rendered sequences. For instance, image-
space denoising algorithms have proved to be very effective at re-
ducing noise and are now commonly used in production environ-
ments. Most of these techniques are, however, intrinsically biased.
In this paper, we explore the concept of control-variate integration,
a technique that was specifically designed to exploit coherence, and
which can do so while preserving the unbiased nature of MC inte-
gration. Control-variate integration has potential in the context of
rendering animations, gradient-domain rendering, upsampling, and
stereo and light field rendering. In this work, we consider applica-
tions to re-rendering and gradient-domain rendering.

The concept of integrating with control variates is simple. Suppose
we want to estimate the expected value F of estimator 〈F 〉, and
there is another estimator 〈H〉 with a known expectation H . Then,
we can use 〈H〉 as the control variate (CV) by formulating a new
estimator 〈F 〉? = 〈F − αH〉+ αH , which, if 〈F 〉 and 〈H〉 are
correlated, will estimate F with lower variance. The parameter α
should reflect the amount of correlation between 〈F 〉 and 〈H〉, and,
if chosen optimally, guarantees that variance will not increase.

Finding practical control variates in the context of image synthesis
is challenging. This is because integrals governing light transport
cannot typically be expressed in closed form, unless we simplify
them heavily by neglecting certain components of the transport.
Such simplifications, however, prevent the variate from correlating
well with 〈F 〉 and the gains of utilizing it diminish quickly. Instead,
we turn to two-level MC integration, a generalization of control-
variate integration that uses a MC estimate of the control variate
instead of a closed-form expression. Previous works on multi-level
MC (see e.g. Giles [2013] for an overview) assume perfect correla-
tion between the signal and the control variate and set α = 1, which
can lead to increased variance in the estimator. We address this is-
sue using the theory of optimally combining unbiased estimators.
We show how this effectively offers the same control as the α in
the control-variate framework, with the advantage of being trivially
applicable to multiple estimators simultaneously.

In the re-rendering application, we use an existing rendering as the
control variate, and re-render the scene after editing various mate-
rial properties. The resulting scheme is similar to the one used by
Günther and Grosch [2015], with the key difference that we rely on
a principled combination of estimators instead of a heuristic one to
reconstruct the final image, leading to significant improvements.
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In the gradient-domain rendering application, we use adjacent pix-
els as the control variates. These neighbors are themselves noisy
and therefore poor control variates on their own. By using an iter-
ated scheme, we gather data from a larger region in order to obtain
a robust effective control variate, resulting in a very similar recon-
struction to the one obtained with the L2 Poisson solver used in re-
cent gradient-domain rendering techniques pioneered by Lehtinen
et al. [2013]. We also propose a weighted iterated reconstruction,
based again on our principled combination of estimators, which
leads to better results than the robust L1 Poisson solver proposed in
previous works. Lastly, we demonstrate how our iterated control-
variate scheme and the Poisson reconstruction are two instances of
the same general filtering scheme. This observation allows us to
import our findings to reweight an L2 Poisson solver, and achieve
similar or better quality than the L1 reconstruction proposed previ-
ously.

In summary, we formulate recent works on re-rendering (Section 4)
and gradient-domain rendering (Section 5) as control-variate inte-
grators leveraging the theory of optimally combining estimators.
Our estimators achieve state-of-the-art reconstruction in both appli-
cations. We also demonstrate the theoretical connection between
our iterated control-variate scheme and the L2 Poisson solver com-
monly used in gradient-domain rendering techniques.

2 Previous Work

Control Variates. Control variates are frequently used as a vari-
ance reduction technique in many fields, e.g. finance [Kemna
and Vorst 1990; Broadie and Glasserman 1998] or operations re-
search [Hesterberg and Nelson 1998]. Lavenberg et al. [1982]
and Nelson [1990] were the first to study the bias and loss of ef-
ficiency when α is obtained from a small set of correlated samples.
Glynn and Szechtman [2002] present connections of CV to con-
ditional Monte Carlo, antithetics, rotation sampling, stratification,
and nonparametric maximum likelihood. An excellent summary of
these findings is presented in the book by Glasserman [2004] and
Loh [1995] provides a thorough review of the CV concept.

In graphics, CVs have remained relatively unexplored compared to
variance reduction techniques like importance sampling. Some no-
table exceptions include Lafortune and Willems’ work on using an
ambient term [1994] or a 5D tree of radiance values [1995] as CVs
during path tracing. Others have applied CVs to direct illumina-
tion or glossy reflections [Szécsi et al. 2004; Fan et al. 2006], aver-
age hemispherical visibility [Clarberg and Akenine-Möller 2008],
or to computing transmittance and free-flight distances in hetero-
geneous participating media [Szirmay-Kalos et al. 2011; Novák
et al. 2014]. These prior approaches apply CVs to specific render-
ing sub-problems, operating on carefully chosen path sub-spaces
or hemispherical rendering integrals. In contrast, we leverage the
CV concept in a very generic way in image space, showing practi-
cal applications in a variety of rendering problems, and establishing
theoretical connections between CVs and seemingly unrelated prior
rendering approaches.

IfH is not known, but can be estimated more efficiently than F , we
can still use 〈H〉 as a control variate: 〈F 〉? = 〈F − αH〉+α〈H〉.
The technique is often referred to as two-level Monte Carlo, or sep-
aration of the main part. The idea of using numerically estimated
control variates was originally formulated for hierarchical paramet-
ric integration, known as multi-level Monte Carlo (MLMC), by
Heinrich [1998; 2000], and then extended to many applications
in financial mathematics, collision physics, and stochastic model-
ing, e.g. for Brownian path simulation [Giles 2008] or solving el-
liptic and parabolic SPDEs [Barth et al. 2011]; see the survey by
Giles [2013] for more examples. Very related to our work is the

hierarchical image synthesis by Keller [2001], which builds upon
MLMC integration; our gradient-domain rendering application uses
an iterated scheme to similar effect but we only sample differences
to very close locations, which can be done with less variance.

Variance-optimal Composite Estimators. Many applications
estimate the mean of a random variable as a linear combination
of multiple estimators. Deriving a set of linear weights that min-
imize the variance of the composite estimator is non-trivial when
the constituent estimators have unequal variances and/or are corre-
lated. Cochran’s [1937] seminal paper on interpreting multiple in-
dependent observations seeded a growing interest in this problem.
Graybill and Deal [1959] demonstrate that two independent estima-
tors can be optimally weighted using estimates of their variances, if
each variance is estimated with at least 9 samples. Zacks [1966]
reduces the requirement to estimating the ratio of the variances,
and Cohen and Sackrowitz [1974] base the weights only on sample
variances and a normalized squared error loss function. General-
izations to multiple, normally distributed estimators were discussed
by Norwood and Hinkelmann [1977], and extensions to multivari-
ate normal distributions presented by Loh [1991]. Halperin [1961]
and later Keller and Olkin [2004] proposed weighting schemes for
unbiased estimators that are correlated deriving the set of optimal
weights from the (estimated) covariance matrix. As we combine
multiple estimators using the aforementioned approaches, we re-
view the relevant theoretical background in Section 3.2.

Gradient-domain Rendering and Re-rendering. Lehtinen et
al. [2013] recently introduced the idea of gradient-domain render-
ing (GDR), which was later improved and extended by Manzi et
al. [2014; 2015] and Kettunen et al. [2015]. In our work, we show
how GDR can be formulated as a control-variate integration, and
propose an improved reconstruction using the theory of optimally
combining estimators. Similarly, we formulate the recent work on
re-rendering of Günther and Grosch [2015] as control-variate inte-
gration and show how its reconstruction can be improved.

3 Theoretical Background

In this section, we outline variance reduction techniques for Monte
Carlo estimation that are related to or used directly by the tech-
niques we will introduce in Sections 4 and 5.

3.1 Control Variates

Suppose we want to numerically evaluate the following integral:

F =

∫
Ω

f(x) dx, (1)

using a Monte Carlo estimator:

〈F 〉n =
1

n

n∑
i=1

f(Xi)

p(Xi)
, (2)

with the expected value E[〈F 〉] = F † and probability density func-
tion (PDF) p(x) for drawing the samples. Let us further assume the
existence of a function h(x)—the control variate—for which the
integral over Ω is known to be H . We can then rewrite F and its
CV estimator 〈F 〉? as:

F =

∫
Ω

f(x)− αh(x) dx+ αH, (3)

〈F 〉? = 〈F − αH〉+ αH, (4)

†For brevity we drop the superscript of the estimator whenever possible.



where the absolute value of α can be interpreted as the strength
of leveraging the control variate. The key feature of the estimator
above is that functions f(x) and h(x) are estimated using the same
sample set. As long as the functions are similar, their difference for
any x will be relatively small and largely independent of the func-
tions’ actual shape; estimator (4) should thus exhibit low variance.

The optimal value of α depends on the correlation between f(x)
and h(x) and can be found by minimizing the variance of Equa-
tion (4) w.r.t. α:

Var[〈F 〉?] = Var[〈F − αH〉+ αH]

= Var[〈F 〉] + α2 Var[〈H〉]− 2α Cov[〈F 〉, 〈H〉] , (5)

yielding α = Cov[〈F 〉, 〈H〉] /Var[〈H〉]. With this choice the
variance of the estimator reads:

Var[〈F 〉?] = Var[〈F 〉] (1− Corr[〈F 〉, 〈H〉]2). (6)

Discussion. Equation (6) clearly shows the necessary precon-
dition for h(x) being a useful control variate, i.e. it needs to be
strongly (anti)correlated with f(x). If the correlation is zero, then
the variance of 〈F 〉? falls back to variance of 〈F 〉 with no gain
compared to the original estimator. If the correlation is perfect (i.e.
1 or −1) then the variance drops to zero. Choosing appropriate α,
ideally proportional to the covariance, prevents the CV estimator
from increasing the variance in cases when h(x) serves as a poor
control variate. In addition to correlation, the performance of the
CV estimator hinges on the efficiency of 〈F − αH〉; indeed, the
variance of the CV estimator can be significantly reduced by draw-
ing samples from a PDF ∝ f(x) − αh(x). It is also worth noting
that true population parameters of 〈F 〉 and 〈H〉 are rarely known
and are frequently replaced by their (dependent) estimates, conse-
quently turning α into a (correlated) random variable.

So far, we only considered control variates with known antideriva-
tives. However, even if the integral H =

∫
Ω
h(x) dx is not known,

we can still use h(x) as a control variate, provided that the esti-
mation of H is relatively inexpensive. We simply replace αH in
estimator (4) by its estimate 〈αH〉m:

〈F 〉? = 〈F − αH〉n + 〈αH〉m. (7)

The variance of such an estimator reads:

Var[〈F 〉?] = Var[〈F 〉n] + α2 Var[〈H〉n]− 2α Cov[〈F 〉n, 〈H〉n]

+ α2 Var[〈H〉m] + 2α Cov[〈F − αH〉n, 〈H〉m] . (8)

We skip the derivation of the optimal α for brevity; it can be com-
puted analogously as before by setting the first derivative of Equa-
tion (8) to zero and solving for α. Estimator (7), typically with α
assumed to be 1, is referred to as the two-level MC estimator.

3.2 Variance-minimizing Combination of Estimators

There are cases when a certain quantity Q can be estimated us-
ing several estimators. The question that arises immediately is:
“What combination of these will minimize the variance of theQ es-
timate?” Given k unbiased independent estimators 〈Q〉1, ..., 〈Q〉k,
where the i-th estimator has a normal distribution N (Q, σ2

i ), we
can define the variance-optimal composite estimator as:

〈Q〉 =

k∑
i=1

wi〈Q〉i, (9)

where the weight wi is defined as the relative reciprocal of the re-
spective variance:

wi =
σ−2
i∑k

j=1 σ
−2
j

. (10)

The variances σ2
i are often unknown in practice. A popular al-

ternative is to substitute an independently estimated sample vari-
ance 〈σ2

i 〉 for each σ2
i . However, since the sample variance is a

random variable itself, the above weight may no longer be opti-
mal and the variance of the composite can theoretically exceed the
variance of individual 〈Q〉i. Interestingly, Norwood and Hinkel-
mann [1977] proved that estimating σ2

i with at least 9 samples en-
sures that Var 〈Q〉 ≤ min(σ2

1 , ..., σ
2
k). For this to hold, 〈Q〉i and

〈σ2
i 〉 must use independent samples, otherwise 〈Q〉 will be biased.

In cases when 〈Q〉1, ..., 〈Q〉k are dependent, an optimal weight-
ing scheme needs to acknowledge their correlation. Keller and
Olkin [2004] define the weights w = (w1, ..., wk) for the optimal
composed estimator as:

w =
eΣ−1

eΣ−1eT
, (11)

where e = (1, ..., 1) and Σ is the covariance matrix. Using such
weights, the variance of estimator (9) equals (eΣ−1eT)−1, and it
grows by (n − 1)/(n − k) if the entries of the covariance matrix
are estimated numerically using n samples [Keller and Olkin 2004].

In the next two sections, we present image-space control variates,
a technique for leveraging information from “nearby” pixels to re-
duce the variance of MC renderings. We strive to introduce the
concept in concrete terms demonstrating its tangible benefits on ap-
plications to re-rendering and gradient-domain rendering.

4 Re-rendering

The workflow of a re-rendering application can be directly mapped
to the concept of two-level MC integration. Given a rendered image
of a scene, we want to produce a new image of the scene with its
material properties changed, while reusing the computation done
for the original image. The original image can be used as a control
variate and, during the re-rendering of the scene, we would only
sample the difference in light transport between the original and the
edited scene. This constitutes our CV estimator, which we combine
with a standard (non-CV) estimator for increased robustness.

More formally, denoting h the path contribution function with the
old material, and f the path contribution function with the new ma-
terial, we readily have the control image, 〈H〉0, obtained using m
samples per pixel,

〈H〉0 =
1

m

m∑
i=1

h(x̄i)

p0(x̄i)
≈
∫

Ω

h(x̄)dx̄, (12)

where x̄ = x0 · · ·xk, with 1 ≤ k ≤ ∞, defines a path of length k,
Ωk is the set of all paths of length k, Ω = ∪∞k=1Ωk is the set of all
paths of all lengths, and p0 is the sampling PDF defined for the old
material properties. We are now interested in computing the new
image using a CV estimator:

〈F 〉? = 〈F −H〉1 + 〈H〉0. (13)
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Figure 2: Re-rendering of the CORNELL BOX scene with three types of changes: 1) we modify the brightness of the two spheres and the
block (top row); 2) we modify the chromaticity of the right wall using the parameter ρ to interpolate between green and blue (middle row); 3)
we use a metal material for the small sphere and change its roughness (bottom row). We used 1024 samples per pixel for the control image
(CI), and 64 for the difference image. For every change, we provide the two input estimators: 〈F 〉1, which corresponds to a path tracer output
(PT), and 〈F 〉?, which corresponds to our control-variate integrator (CVPT) with α = 1. Our optimally-weighted, composite estimator, 〈F 〉
(CVPT-opt), leverages the (anti)correlation of the PT and CVPT estimates to produce a result with lower variance than both inputs, and
improves significantly upon the reconstruction obtained using the heuristic (GG15, using a hand-tuned threshold of τ = 0.4) proposed by
Günther and Grosch [2015]. The numbers at the bottom of each image report the relative MSE ×10−3 of the respective estimator.

For convenience, we define the following estimators,

〈F 〉1 =
1

n

n∑
i=1

f(x̄i)

p1(x̄i)
,

〈H〉1 =
1

n

n∑
i=1

h(x̄i)

p1(x̄i)
,

〈D〉1 =
1

n

n∑
i=1

f(x̄i)− h(x̄i)

p1(x̄i)
,

and evaluate them using the same set of paths samples x̄i generated
from PDF p1, defined for the new material properties. As such,
〈F −H〉1 = 〈F 〉1 − 〈H〉1 = 〈D〉1.

In order to optimally combine the CV estimator 〈F 〉? and the stan-
dard estimator 〈F 〉1, we first need to evaluate their respective vari-
ances. For the CV estimator 〈F 〉? we have

Var[〈F 〉?] = Var[〈D〉1] + Var[〈H〉0] . (14)

The covariance between the two estimators is

Cov[〈F 〉?, 〈F 〉1] = Cov[〈F 〉1 − 〈H〉1 + 〈H〉0, 〈F 〉1]

= Var[〈F 〉1]− Cov[〈H〉1, 〈F 〉1] , (15)

with

Cov[〈H〉1, 〈F 〉1] =
Var[〈F 〉1] + Var[〈H〉1]−Var[〈D〉1]

2
.

(16)

Given the covariance matrix of the two estimators, 〈F 〉? and 〈F 〉1,
we can now use the weights computed using Equation (11) to obtain
the final composite estimator 〈F 〉 = w?〈F 〉? + w1〈F 〉1.

4.1 Implementation

In order to evaluate the performance of the composite estimator,
we extended the PBRT renderer [Pharr and Humphreys 2010] by
adding a new material type that can hold two material settings. We
also added a modified path tracing integrator, which outputs results
with both materials, 〈H〉1 and 〈F 〉1, as well as the sampled differ-
ence, 〈D〉1. Additionally, we collect the sample mean variances of
〈H〉0, 〈H〉1, 〈F 〉1, and 〈D〉1. Since we use the same PDF when
sampling 〈H〉1 and 〈F 〉1, all estimators used during re-rendering
can be evaluated with the same set of paths; we simply need to
keep track of the two path contributions corresponding to the mate-
rial settings before and after editing. The only extra processing cost,
compared to a standard path tracer, occurs at path vertices where the
material has changed and the BSDF needs to be evaluated twice.

Robustness at Low Sampling Rates. The covariance matrix es-
timate can be too noisy at low sampling rates. We therefore prefilter
all sample variances using an NL-Means filter [Buades et al. 2005;
Rousselle et al. 2012] over a 3×3 neighborhood, guided by the cor-
responding color buffer. Furthermore, since covariance matrices are
positive, semi-definite, we detect cases when the eigenvalues in the
matrix are negative and switch to a simpler weighting scheme using
Equation 10, that is, assuming independent estimators. Finally, we
specifically handle pixels where the (noisy) variance estimates of
〈F 〉1 and 〈D〉1 are both zero. In such cases, the covariance-based
weighting fully discards the CV estimator, which is undesired. In-
stead, we employ sample rate-based weights, where the weight of
an estimator is directly proportional to its sampling rate.

Unbiased Variant. Since we use sample covariances computed
while rendering, the resulting weighted reconstruction will be bi-
ased. To remove the bias, we need to decouple the covariance esti-
mation from the estimation of pixel colors. We thus employ a cross-
weighting scheme splitting the samples evenly between two half-
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(1024 spp) 363 (64 spp) 135 230 187 84

(64 spp) 22.5 (1024 spp) 266 191 244 19.6
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Figure 3: Re-rendering of the HORSE ROOM scene of Figure 1 at varying sampling rates: 1024/64, 64/1024, and 64/64 samples per pixel
for rendering the control/difference images. Our composite estimator (CVPT-opt) offers consistently improved results, whereas the heuristic
of Günther and Grosch is sensitive to its threshold setting—we tested τ = 0.1 and τ = 0.4—and fails when the control image is noisy. The
numbers at the bottom of each image report the relative MSE ×10−3 of the respective estimator.

buffers, as proposed by Rousselle et al. [2012]. Using covariance
matrices of one buffer to weight the reconstruction of the second
buffer, and vice-versa, yields unbiased reconstructions. It is worth
noting that the unbiased reconstruction is not robust in the presence
of fireflies, as can be seen in our supplemental material, since the
weighting assumes normally distributed random variables.

4.2 Results and Discussion

We performed multiple experiments to evaluate the robustness of
our re-rendering technique and analyzed a number of estimators:
the standard path tracer 〈F 〉1, the control-variate estimator 〈F 〉?,
the composite estimator 〈F 〉, and its unbiased variant using cross-
weighting 〈F 〉×. All results were produced at three different sam-
pling rates: 1024/64, 64/1024, and 64/64 samples per pixel, for
rendering the control/difference images with the gathered statistics
prefiltered using an NL-Means filter. Due to space constraints, we
only present a subset of the results here; see the supplemental ma-
terial for the full set and results without prefiltering.

We also compare our estimators to the work of Günther and
Grosch [2015], who address scene re-rendering also by estimating
differences to previous renders. The key difference in our work is
that we obtain the composite estimator by applying the theory of an
optimal combination and resort to heuristics only when the statis-
tics are not reliable. The solution proposed by Günther and Grosch
uses only the standard or only the difference-based estimator, with
a heuristic selection criterion based solely on the magnitude of the
sampled difference with respect to a prescribed threshold. For their
method, we used two thresholds: τ = 0.1, as suggested by the
authors, and τ = 0.4 that performed better in some of our tests.

CORNELL BOX. Figure 2 compares the aforementioned estima-
tors in a simple scene modified by independently changing the
brightness, chromaticity, and roughness of certain materials. For
each modification, we performed small and large changes, but only
present results with the largest modification and 1024/64 samples
per pixel for the control/difference images; see the supplementary

material for a complete evaluation. Changing the brightness illus-
trates the underlying tradeoff of using control variates: if the differ-
ence to be estimated has a larger magnitude than the signal itself,
e.g. when changing the brightness to 0.17 (top row), then the CV
estimator 〈F 〉? exhibits larger variance. Note, however, that the
standard estimator 〈F 〉1 and 〈F 〉? are still correlated (or rather, an-
ticorrelated here). This allows the weighted reconstruction 〈F 〉 to
further reduce the error and obtain results that are better than with
each estimator in isolation. In contrast, the heuristic of Günther and
Grosch cannot leverage this (anti)correlation and produces worse
results. The chromaticity experiment (middle row) demonstrates
general robustness of two-level MC integration under fairly large
hue changes, while the roughness change (bottom row) illustrates
the behavior when handling glossy materials. In particular, our
weighted reconstruction is more robust to fireflies than the heuristic
proposed by Günther and Grosch.

HORSE ROOM. In Figures 1 and 3, we apply our re-rendering ap-
plication to an interior scene lit by an environment map, where we
increased the albedo of walls and changed the albedo texture and
the coating roughness of the floor, all at the same time. We show
results at different sampling rates to highlight the robustness of our
composite estimator to noisy control/difference images. The heuris-
tic proposed by Günther and Grosch succeeds when the control im-
age is of high quality (top row), but preserves some of its noise,
which results in suboptimal results in the bottom row. Our compos-
ite estimator 〈F 〉 yields improvements at all sampling rates. The
cost of the reconstruction scales with the image size; computing the
weights for 1280 × 720 image took 4 core seconds on a 3.2GHz
Intel Core i7 CPU, using a prototype Python implementation, while
rendering the scene at 64 samples per pixel takes 38 core minutes.

Discussion. While our composite estimator performed best in
all experiments, it is worth pointing out that extensive editing in-
creases the difference to the control image and the benefits of using
CV estimators diminish. Consequently, the proposed re-rendering
scheme is better suited for fine-tuning shader parameters than for
large-scale modifications.



5 Gradient-Domain Rendering

Monte Carlo rendering typically suffers from high variance. One
approach to reduce the noise is to estimate the color Fp of a pixel p
as a weighted sum of its neighborhood Np:

〈Fp〉 =
∑
q∈Np

wp,q 〈Fq〉, (17)

where wp,q is the weight of neighbor q w.r.t. p.

Image-space denoising algorithms [Zwicker et al. 2015] commonly
use the neighbor colors directly, neglecting the fact that the expecta-
tion of the difference between the pixel and its neighbor may not be
zero. A notable exception is the work on gradient-domain render-
ing (GDR), pioneered by Lehtinen et al. [2013], where the contribu-
tions of neighbors are “corrected” by taking into account horizontal
and vertical image gradients. Our approach is very similar: we use
the neighbors as control variates, i.e. we add their weighted con-
tribution adjusted by an estimate of the color difference between p
and q:

〈Fp〉 =
1

|Np|
∑
q∈Np

〈Fp − αp,qFq〉n + αp,q 〈Fq〉m. (18)

Estimator (18) is a straightforward extension of the two-level MC
estimator (7) to multiple control variates. We could in theory com-
pute the individual variance-optimal α coefficients according to the
recipe given in Section 3.1. This would not, however, take into ac-
count the correlation between individual control variates and might
result in a poor composite estimator.

Instead, we rewrite Equation (18) to factor out the weights from the
estimators:

〈Fp〉 =
1

|Np|
∑
q∈Np

〈Fp−αp,qFp+αp,qFp−αp,qFq〉n + αp,q 〈Fq〉m

=
1

|Np|
∑
q∈Np

(1−αp,q)〈Fp〉n + αp,q (〈Fp−Fq〉n + 〈Fq〉m) .

(19)

Interestingly, this formulation closely resembles Equation (9): a
weighted sum of estimators of the same quantity, Fp. As such, we
can rewrite the composite estimator in a more general form:

〈Fp〉 =
∑
q∈Np

wp,q (〈Fp − Fq〉n + 〈Fq〉m) , (20)

where
∑
wp,q = 1, and the individual generic weights w can be

set using formulas in Section 3.2. Please note that we did not lose
the baseline estimator 〈Fp〉, as it is implicitly included when q = p.

In most denoising applications, Np is fairly large, e.g. spanning over
a window of 21 × 21 pixels [Rousselle et al. 2012]. Considering
such a large neighborhood would require, in addition to evaluating
〈Fq〉, estimating the difference 〈Fp − Fq〉 for 441 neighbor pixels;
this is rather impractical. We instead restrict the neighborhood to
the four nearest neighbors and then perform the estimation of final
pixel colors by iteratively propagating contributions from distant
neighbors.

Neighborhood. First, we constrain the neighborhood. In addi-
tion to p, we consider its immediate left, right, top, and bottom

neighbors, Np = {p, l, r, t, b}, yielding the following five estima-
tors:

〈Fp〉p = 〈Fp〉,
〈Fp〉l = 〈Fp − Fl〉+ 〈Fl〉, 〈Fp〉r = 〈Fp − Fr〉+ 〈Fr〉,
〈Fp〉t = 〈Fp − Ft〉+ 〈Ft〉, 〈Fp〉b = 〈Fp − Fb〉+ 〈Fb〉.

Provided that we appropriately weight these estimators (we discuss
two possible schemes in Sections 5.2 and 5.3), we obtain a CV es-
timator for every p in the image. Evaluating these estimators con-
stitutes one step of the iterative estimation.

Iterative Estimation. We apply the CV estimators iteratively for-
mulating the estimate ofF i+1

p in the (i+1)-th iteration as a function
of the estimates in iteration i:

〈F i+1
p 〉 =

∑
q∈Np

wip,q

(
〈F ip − F iq〉+ 〈F iq〉

)
. (21)

Provided that the estimators on the right-hand side are unbiased,
and the weightswp,q computed independently, estimator (21) is un-
biased, and so is by transitivity the entire iterative reconstruction.

Discussion. The iterative formulation is effectively very similar
to screened Poisson solvers employed in gradient-domain render-
ing, but formulated as an integration with control variates, which
leads to a slightly different reconstruction strategy; we relate the
two more precisely in Section 5.4. Our reconstruction is also related
to multi-level MC methods, the main difference being that MLMC
use a different parameterization for each level (iteration). For in-
stance, the hierarchical image synthesis proposed by Keller [2001]
uses a mipmap where each level has a different set of pixels; hence
the difference Fp−Fq needs to be estimated at every level. In con-
trast, we use the same set of pixels in every iteration. Consequently,
the difference Fp − Fq can be estimated only once, a-priori, and
reused across all iterations.

5.1 Estimation of Pixel Differences

Since our goal is to produce physically-correct images, we rely on
path tracing algorithms that synthesize the color of a pixel by aver-
aging many path samples. In addition to estimating the initial color
of each pixel p, denoted 〈F 0

p 〉, we also need to estimate the differ-
ence Fp − Fq between any pair of adjacent pixels using correlated
(path) samples. This can be trivially achieved by formulating the in-
tegration in the primary sample space (PSS) [Kelemen et al. 2002],
which in practice amounts to constructing paths through two adja-
cent pixels using the same sequence of random numbers. Unfortu-
nately, the correlation of such paths can still be fairly weak because
the paths can diverge significantly, especially at higher bounces.
Furthermore, estimating the difference involves computing two full
paths; this is relatively expensive.

A better alternative is to use the shift operator proposed in the recent
gradient-domain path tracing algorithm by Kettunen et al. [2015].
The shift operator addresses both of the aforementioned issues, and
allows for estimating the finite differences with lower variance; see
Figure 4. The estimated horizontal and vertical differences are
stored in two buffers, 〈X〉 and 〈Y 〉, where 〈Xp〉 = 〈Fr − Fp〉
and 〈Yp〉 = 〈Fb − Fp〉.

5.2 Uniform Reconstruction

A trivial way of linearly combining k estimators is to average them,
i.e. to weight each by 1/k. We will refer to this as the uniform re-
construction, and while not being very practical, the uniform recon-
struction will help us relate our work to a screened Poisson solver in
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Figure 4: Control-variate Monte Carlo rendering of the CORNELL
BOX scene. We sample the differences X , Y using paths with the
same PSS coordinates (top row) and the shift operator of Kettunen
et al. [2015] (bottom row), which better correlates the samples. The
shift operator estimates X , Y with lower variance and results in a
better reconstruction (CVPT-uni), which can be further improved
using our weighted reconstruction (CVPT-opt).

Section 5.4. With uniform weights and using F , X , and Y buffers,
estimator (20) can be written as:

〈F i+1
p 〉 =

1

5
〈F ip〉

+
1

5

(
〈F il 〉+ 〈Xl〉

)
+

1

5

(
〈F ir〉 − 〈Xp〉

)
+

1

5

(
〈F it 〉+ 〈Yt〉

)
+

1

5

(
〈F ib 〉 − 〈Yp〉

)
. (22)

It is important to note that, while we update the color values F , the
finite differences stay fixed. If we perform an infinite number of it-
erations, the uniform reconstruction will converge to the integrated-
gradient image. Adjusting the number of iterations therefore allows
“interpolating” between the noisy input image 〈F 0〉 and the image
of integrated gradients, see Figure 5 for a 1D illustration.

5.3 Weighted Reconstruction

In this section, we leverage the theory from Section 3.2 and dis-
cuss the possibilities of deriving more optimal weights. It is worth
noting that even if we estimate F 0, X , and Y independently, the
estimators in subsequent iterations become increasingly correlated
as they combine (be it using different weights) values from similar
sets of pixels.

Ideally, we would compute the weights as proposed in Equa-
tion (11) from the per-pixel covariance matrix. While building
the full matrix for our five estimators in Np is feasible, updating
it through the iterative reconstruction would be non-trivial. This is
because estimators at higher iterations combine values from large
regions. Estimating their covariance is thus computationally de-
manding and would require significant book keeping. As such, we
propose a simplified scheme, which can be efficiently implemented
and still provides tangible benefits over the state of the art.

During rendering, we progressively compute the sample mean
variances Var

[
〈F 0
p 〉
]

of pixel colors and sample mean variances
Var[〈Xp〉] and Var[〈Yp〉] of pixel differences for every pixel p.
Using Equation (23), we use them to approximate the variances
of estimators in the initial iteration; these are in turn used in Equa-
tion (10) to weight our estimators. The weights in higher itera-
tions are obtained analogously, but using reduced estimator vari-
ances. We detail the reduction of estimator variance and other as-

sumptions needed for the aforementioned approach in the following
paragraphs.

Independent Estimators. Since we cannot track the estimator
covariances through our iterated scheme, we instead simply as-
sume they are independent. This assumption leads to sub-optimal
weights, but still significantly improves upon the uniform weights.
Note that our deterministic variance-reduction model defined below
accounts to some extent for the increased correlation as we iterate
our reconstruction, and mitigates the impact of assuming indepen-
dent estimators.

Locally Uniform Variance. The variance of a neighbor estima-
tor can be computed as the variance of that neighbor’s color in-
creased by the variance of the corresponding finite difference, i.e.
Var
[
〈F iq〉

]
+ Var[〈Fq − Fp〉] for neighbor q. However, we found

that using the neighbor’s color variance Var
[
〈F iq〉

]
is detrimental

in practice because bright neighbors tend to have higher variance
and therefore lower weights; this leads to significant energy loss as
shown in Figure 6. To address this issue, we observe that our iter-
ated reconstruction leads to a locally uniform variance in the limit.
Consequently, we assume the neighbor pixel has the same variance
as the center pixel, and compute the neighbor estimator variance as:

Var
[
〈F ip〉q

]
= Var

[
〈F ip〉

]
+ Var[〈Fq − Fp〉] . (23)

Additionally, we update each pixel variance using the median vari-
ance of its neighborhood Np at the start of the first iteration, since
the input sample variance can be fairly noisy at low sampling rates.
As can be seen in Figure 6, using our locally uniform variance as-
sumption results in a much more robust energy preservation.

Deterministic Variance Model. Computing the variance of pixel
colors after the first iteration is challenging, as the weights are ran-
dom variables correlated with the data. We thus propose to update
the variance of pixel colors using an idealized model:

Var
[
〈F ip〉

]
=

Var
[
〈F i−1
p 〉

]
ε+ 1 + 4× 0.5i−1

, (24)

which effectively assumes an ideal variance reduction at every iter-
ation. At the first iteration i = 1, and the variance is reduced by a
factor of 5× (ignoring ε), which corresponds to the number of in-
dependent estimators that we are combining. The factor 4× 0.5i−1

roughly models the amount of new (independent) information that
the four neighbor estimators contribute in each iteration. To en-
sure that the variance converges to zero in the limit, we increase the
denominator by a small epsilon; we use ε = 0.01.

5.4 Relation to Screened Poisson Equation

In this section, we relate our reconstruction to the screened Pois-
son solver used in previous GDR algorithms [Lehtinen et al. 2013;
Manzi et al. 2014; Kettunen et al. 2015; Manzi et al. 2015]. With-
out loss of generality, we will restrict our discussion to a 1D case
of reconstructing a single scanline of an input image.

Previous GDR techniques reconstruct the final image using the
Screened Poisson Equation to compute the estimate U that best
matches the input data F and gradient X in the L2 sense,∫

(λ(U − F ))2 + (∇U −X)2dx, (25)

where λ is a parameter that controls the weight of the screening
function. As λ approaches 0, the reconstruction converges to the
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Figure 5: Reconstruction of a 1D signal using our uniform iterated scheme and an L2 Poisson solver. Both reconstructions use noisy values
and noise-free differences. The λ values for the Poisson solver were chosen to give a similar results to our scheme. The corresponding filtering
kernels are shown on the right: Kp = λ2 exp(−λ|r|) for the Poisson solver, and Ki is the i-times self-convolved box filter [1, 1, 1]/3.

With per-neighbor variance With locally uniform variance

R
ef

er
en

ce
R

es
ul

t

Figure 6: Reconstruction of the SPONZA scene with per-neighbor
variance to compute the reconstruction weights (left) and with lo-
cally uniform assumption (right). The upper part of each image is
the reconstruction output, while the lower part is the reference ren-
dering. The energy loss results in a darkened reconstruction with
per-neighbor variance.

integrated gradient I , such that∇I = X , and as λ tends to infinity,
the reconstruction converges to the input F . The parameter λ has
a very similar impact as the number of iterations in the iterated
reconstruction described in Section 5.2.

We will now show that our iterated CV reconstruction and the
screened Poisson reconstruction are specific instances of a more
general scheme. Minimizing the energy function (25) amounts to
solving the screened Poisson equation (see Bhat et al. [2008] for a
full derivation),[

∆− λ2]U = ∇X − λ2F = −S, (26)

where S = λ2F−∇X is called the source function. Using Green’s
theory, we can directly compute the solution U from the source S,

U = G ∗ S = G ∗ (λ2F −∇X) = G ∗ (λ2F −∆I),

where the Green’s function G is the response of the screened Pois-
son operator

[
∆− λ2

]
to an impulse, and I is the integrated gradi-

ent, such that ∆I = ∇X . Equivalently, we can write

U = λ2G ∗
(
F − ∆I

λ2

)
. (27)

In particular, we have

I = λ2G ∗
(
I − ∆I

λ2

)
, (28)

which follows directly from the application of the Green’s function.
This is because applying the screened Poisson equation to I gives:

[∆− λ2]I = ∆I − λ2I = −(λ2I −∆I), (29)

and I is therefore the result of convolving the source (λ2I − ∆I)
with the Green’s function, I = G∗(λ2I−∆I) = λ2G∗

(
I − ∆I

λ2

)
,

which is Equation (28).

We can now combine Equations (27) and (28),

U = λ2G ∗
(
F − ∆I

λ2

)
− λ2G ∗

(
I − ∆I

λ2

)
+ I

= λ2G ∗ (F − I) + I. (30)

In Equation (30), the output U can be interpreted as filtering the
residual (F − I), which represents the disagreement between the
throughput and gradient data, and adding it back to the integrated
gradient. Let us now define a general filtering kernel K, such that

U = K ∗ (F − I) + I. (31)

We can now set K to be any normalized kernel, in order to get an
unbiased reconstruction. For instance, if we setK to be the identity
filter, then U = F . If we set K to be a uniform filter with infinite
support, then U = I , since we have

∫
(F − I) = 0 by construc-

tion. For the L2 Poisson solver, we have Kp = λ2G, and for our
iterated reconstruction, Ki is the result of i-times self-convolving
the averaging kernel, [1, 1, 1]/3. We show in Figure 5 reconstruc-
tions obtained using an L2 Poisson solver and our uniform iterated
scheme, as well as the corresponding filtering kernels. It is impor-
tant to note that only the kernel Kp = λ2G corresponds to solving
the screened Poisson equation. Consequently, our proposed iterated
reconstruction is not a screened Poisson solver, but rather an al-
ternate reconstruction with similar properties; this similarity stems
from the similarity of the kernel shapes for some combinations of
λ and iteration count.

We can also define a different filtering kernel for each pixel of the
image, which is effectively what our weighted iterated scheme and
the L1 Poisson solver are doing. We will now show how we can use
the weights of the first iteration of our iterated scheme to weight
an L2 Poisson solver, and directly get results of similar or better
quality than the L1 reconstruction.

Weighted L2 reconstruction. Our iterated reconstruction using
uniform weights differs from solving the screened Poisson equa-
tion only in the nature of the noise-filtering kernel used: a self-
convolved box filter in the case of our iterated reconstruction, and
the corresponding Green’s function for the screened Poisson recon-
struction. Conceptually, our weighted reconstruction is similar to
the L1 Poisson reconstruction used in previous GDR techniques,
since the L1 reconstruction is implemented as an iterated weighted
least square solver, i.e. the L1 solution corresponds to the solu-
tion of a specifically weighted L2 solver. A similar result can be
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Figure 7: Reconstruction bias and standard deviation in the
SPONZA scene (rendered with 64 samples per pixel) after 20 itera-
tions of our proposed reconstruction scheme. We visualize the bias
(top row; red for positive, cyan for negative) and standard devia-
tion (bottom row) of our weighted reconstruction (CVPT-opt), and
an unbiased variant (CVPT-cross) using a cross-weighting scheme.
Images are scaled by 100 for visualization. The cross-weighting
scheme eliminates the bias, at the cost of an increase in the stan-
dard deviation of the reconstruction.

obtained by weighting the gradient constraints in the Poisson re-
construction, while always using a unit weight for the throughput
constraints. For this, we directly leverage the weights computed
for our first reconstruction iteration. Each gradient is used to com-
pute two neighbor estimates (left-right pair, or top-bottom pair). In
each case, we compute the relative weight of the neighbor estimate
as the ratio between the corresponding neighbor estimator and the
current value estimator, and the final gradient weight is taken as the
minimum of the two ratios. For brevity, we consider only the hori-
zontal case. The difference Xp between neighbors p and r is used
to estimate the color of p using r, 〈F 0

p 〉r , and vice versa, 〈F 0
r 〉p.

The weight that we assign toXp in our weighted L2 Poisson solver
reads:

w (Xp) = min

(
Var 〈F 0

p 〉r
Var 〈F 0

p 〉
,

Var 〈F 0
r 〉p

Var 〈F 0
r 〉

)
. (32)

We only reweight the gradient entries of the system, in order to
prevent energy loss. Manzi et al. [2016] similarly observed that
the L1 solver suffers from energy loss and proposed a mixed L1 –
L2 reconstruction, where the throughput entries are left untouched;
see our supplemental material for a comparison to that solver.

5.5 Results

We performed a number of experiments and comparisons to evalu-
ate our proposed weighted iterated reconstruction. We consider the
source of bias in our reconstruction, the impact of our simplifying
assumptions on the reconstruction, and also compared our results
to reconstructions used in previous works.

Reconstruction Bias. As in the re-rendering application of Sec-
tion 4, our weighted reconstruction is inherently biased, since the
weights are computed according to the statistics of the rendering
itself. Here again, we can obtain independent statistics by distribut-
ing our samples evenly over two half buffers, as proposed by Rous-
selle et al. [2012]. By using the first buffer statistics to weight the
reconstruction of the second buffer, and vice versa, we can obtain
an unbiased reconstruction. In Figure 7, we visualize the average
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Figure 8: We plot the relative MSE as a function of the number of it-
erations, when reconstructing the SPONZA scene (rendered with 64
samples per pixel) with our iterated schemes driven by noisy statis-
tics, and weighted reconstructions driven by ground truth statistics,
using zero, one, two, or all three of our assumptions (CVPT-gnd-0
to CVPT-gnd-3), illustrating the cumulative impact of our assump-
tions on the reconstruction quality.

difference between 1000 weighted reconstructions of the SPONZA
scene (each rendered with a different random number generator
seed) and a ground truth rendering. The bias of our weighted recon-
struction (CVPT-opt) is clearly visible, but goes away when using
independent statistics by cross weighting two half buffers (CVPT-
cross). This unbiased variant however typically performs worse,
in particular in the presence of outliers. This translates into an in-
creased standard deviation in the unbiased reconstruction, as shown
in Figure 7; see our supplemental materials for additional results.

Assumptions. In Figure 8, we evaluate the impact of the simpli-
fying assumptions of our weighted iterated reconstruction (see Sec-
tion 5.3) on the SPONZA scene. Again we use 1000 independent
renderings, from which we can compute ground truth covariance
matrices for every pixel at each step of our iterative reconstruction.
We then gradually apply our approximations to these ground truth
statistics: with no assumption (CVPT-gnd-0), only assuming inde-
pendent estimators (CVPT-gnd-1), also assuming locally uniform
variance (CVPT-gnd-2), and with all three assumptions (CVPT-
gnd-3). We also provide errors for the uniform (CVPT-uni) and
weighted (CVPT-opt and CVPT-cross) reconstructions using noisy
statistics. The ground truth reconstructions are unbiased and they
should therefore be compared to our unbiased weighted reconstruc-
tion variant (CVPT-cross). In practice, our assumptions do impact
the reconstruction quality, but strike a reasonable balance between
practicality and accuracy. Also, as illustrated in Figure 7, our as-
sumptions only affect the quality of the reconstruction, and do not
prevent us from achieving unbiased reconstructions, provided we
use independent statistics.

Comparisons to Screened Poisson Solvers. In Figure 9, we
compare our proposed uniform and weighted iterated reconstruc-
tions (CVPT-uni and CVPT-opt) to different variants of (weighted)
screened Poisson solvers: the L2 and L1 reconstructions (GDPT-
L2 and GDPT-L1) used in the GDPT algorithm of Kettunen et
al. [2015], and our proposed weighted L2 solver (GDPT-WL2).
In practice, our weighted iterated reconstruction gives similar or
slightly better results than the L1 solver, and takes 16 core sec-
onds on a 3.2GHz Intel Core i7 CPU to process a 1280 × 720
rendering, compared to 19 core seconds for the L1 solver (using



Ours Ours Ours
Input GDPT-L2 CVPT-uni GDPT-L1 GDPT-WL2 CVPT-opt Reference

Sponza – 16 spp 28.2 3.35 3.40 3.21 1.92 1.84

Veach Door – 256 spp 261 38.5 38.2 25.8 12.8 8.55

Bathroom – 256 spp 61.6 9.80 9.91 8.76 7.37 6.99

Kitchen – 256 spp 34.6 9.59 9.53 8.66 6.38 6.19

Bookshelf – 256 spp 206 36.5 36.2 31.4 14.9 12.9

Figure 9: Denoising results using our interated uniform (CVPT-uni, 50 iterations) and weighted (CVPT-opt, 100 iterations) reconstructions,
compared to the L2 and L1 Poisson reconstructions of the GDPT algorithm (GDPT-L2 and GDPT-L1, λ = 0.2). Our uniform reconstruction
is very close the the L2 Poisson reconstruction, and our weighted reconstruction offers a significantly improved results, with better energy
preservation and fewer residual noise than the L1 Poisson reconstruction. Our weighted L2 Poisson reconstruction (GDPT-WL2, λ = 0.2)
offers similar or better results than the L1 reconstruction, but does not require an iterated least square solver. The numbers at the bottom of
each image report the relative MSE ×10−3 of the respective estimator.



a C++ implementation for both, the GPU implementation of the
GDPT-L1 reconstruction takes only 1 second). In general, the re-
construction time is only a small fraction of the rendering time.
For instance, rendering the SPONZA and BATHROOM scenes at 16
samples per pixel respectively takes 12 and 13 core minutes. Our
weighted L2 solver, where gradients constraints are weighted using
the weights designed for our iterated reconstruction gives similarly
robust results as with the L1 reconstruction, but with a better en-
ergy preservation and at a lower cost. Our supplemental material
provides results at 16, 64, 256, and 1024 samples per pixel, as well
as results using the unbiased variant of our weighted iterated re-
construction, and results with the mixed L1 –L2 screened Poisson
solver proposed by Manzi et al. [2016], which was designed to bet-
ter preserve energy than the standard L1 solver.

Comparisons to Image-space Denoisers. While GDR can be
seen as a form of denoising, gradient-domain reconstructions (in-
cluding our own) are not competitive with state-of-the-art image-
space denoisers. We refer the reader to the work of Manzi et
al. [2016] for a discussion on the subject, and to our supplemen-
tal material for comparisons with two recent image-space denois-
ers [Rousselle et al. 2013; Bitterli et al. 2016].

6 Conclusion

We have presented an overview of the two-level Monte Carlo in-
tegration framework, a very simple but powerful tool, and applied
it in the context of re-rendering and gradient-domain rendering. In
our gradient-domain rendering application, we have a fairly noisy
set of control variates (the four adjacent pixels), and use an iterated
scheme to gather information from a larger neighborhood, which
effectively offers useful control data. In our re-rendering applica-
tion, we directly use a control image rendered with a larger number
of samples, and propose a full reconstruction scheme that exploits
the correlation between the standard path tracer estimator and the
control-variate estimator, to offer high-quality re-rendering results
at low sample rates, even for fairly large edits.

Our work also demonstrate how previous works, Consistent Scene
Editing by Progressive Difference Image [Günther and Grosch
2015] for the re-rendering application, and Gradient-domain Path
Tracing [Kettunen et al. 2015] for the gradient-domain rendering
application, were both actually implementing control-variate inte-
gration schemes. Both previous works used some form of weighted
reconstruction designed to adress the limitations of the control-
variate estimator, and we showed how these weighting schemes can
be interpreted as instances of a more general framework. We also
proposed alternative weighted reconstructions, based on the theory
of optimal estimator combinations, which offer consistent improve-
ments on the state-of-the-art.

We intend to further explore potential applications of control-
variate integration. In particular, our re-rendering application as-
sumes a static scene, and we expect that leveraging the shift oper-
ator proposed by Kettunen et al. [2015] would increase the useful-
ness of re-rendering for dynamic scene edits. It would also be in-
teresting to explore adaptive sampling strategies to improve our de-
noising application, as well as the ideal tradeoff between sampling
the pixel colors and their gradients. Given the significant improve-
ment offered by the shift operator, compared to correlated sampling
in primary sample space, it is clear that further research in the de-
sign of improved shifts holds great potential. Lastly, we believe
that control-variate integration could be leveraged to perform sparse
spatio-temporal sampling of animated sequences, which could of-
fer some interesting scaling to high framerate and high resolution
renders.
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