
Compositional Neural Scene Representations for Shadow Inference:

Supplementary Material

JONATHAN GRANSKOG, ETH Zurich & NVIDIA

FABRICE ROUSSELLE, NVIDIA

MARIOS PAPAS, DisneyResearch|Studios

JAN NOVÁK, NVIDIA

ACM Reference Format:
Jonathan Granskog, Fabrice Rousselle, Marios Papas, and Jan Novák. 2020.

Compositional Neural Scene Representations for Shadow Inference: Supple-

mentary Material. ACM Trans. Graph. 39, 4, Article 135 (July 2020), 7 pages.

https://doi.org/10.1145/3386569.3392475

1 IMAGE GENERATORS

Numerous neural image generators have been proposed in the past.

Some of them generate the novel image by transforming buffers ren-

dered from the novel view, e.g. denoising and shading U-nets [Chai-

tanya et al. 2017; Nalbach et al. 2017]. Other generators rely only

on the neural scene representation, either directly [Eslami et al.

2018], or by extracting a 2D slice of it via ray marching [Sitzmann

et al. 2019]. Our preferred approach lies somewhere in the mid-

dle, i.e. we want to leverage the neural scene representation and a

cheap-to-compute G-buffer from the novel view.

We tested three, previously published generators adjusted to con-

sume cv , gv , and r as inputs. Table 1 lists their numbers of trainable

parameters and the training times. Each generator is illustrated in

Figure 1, detailed in the next section, and analyzed in Section 1.2.

1.1 Implementation Details

GQN generator. The GQN generator [Eslami et al. 2018] is a prob-

abilistic model consisting of prior and conditional densities that are

parameterized by the output of deep convolutional networks. Each

network is based on the recurrent convolutional DRAWmodel [Gre-

gor et al. 2016], which constructs the conditional density sequen-

tially using a convolutional LSTM core. Each instance of the core

receives the camera parameters cv , the G-buffer gv , the scene rep-
resentation r, and all the other inputs (e.g. the state of the LSTM

core) that Eslami et al. [2018] utilized.

We implemented the GQN generator as specified by Eslami et al.

[2018]. All our experiments used twelve LSTM cells without weight

sharing, which was their best-performing architecture, operating

on 16 × 16 × 128 states. The number of latent variables input into

each cell was 16×16×3. The G-buffer gv is downsampled to 16×16

and concatenated to the other inputs of the cells. We also utilized

Authors’ addresses: Jonathan Granskog, ETH Zurich & NVIDIA, jgranskog@nvidia.

com; Fabrice Rousselle, NVIDIA, frousselle@nvidia.com; Marios Papas, DisneyRe-

search|Studios, marios.papas@disneyresearch.com; Jan Novák, NVIDIA, jnovak@

nvidia.com.

This is the author’s version of the work. It is posted here for your personal use. Not for

redistribution. The definitive Version of Record was published in ACM Transactions

on Graphics.

© 2020 Association for Computing Machinery.

0730-0301/2020/7-ART135

https://doi.org/10.1145/3386569.3392475

Table 1. Parameters of the encoder and the different generators. The train-

ing times are for the complete model, i.e. the encoder with one of the

generators, using NVIDIA Tesla V100.

of parameters Training time

Pool encoder 2 000 644

GQN generator 147 735 199 10 days

U-net generator 80 596 099 8.5 days

Pixel generator 4 199 939 8.5 days

U-NET GENERATOR

PIXEL GENERATOR

GQN GENERATOR

LSTM
CORE

LSTM
CORE

LSTM
CORE

Fig. 1. Illustration of tested image generators. The green and yellow boxes

represent tensors holding the G-buffer gv and spatially duplicated camera

parameters cv for the novel view. Red boxes represent the (spatially dupli-

cated) neural scene representation r. Black arrows represent flow of data

and blue arrows symbolize convolutions (with pooling and upsampling in

the case of the U-net).

GQN generator U-net generator Pixel generator

MAPE PieAPP LPIPS
0.66 1.77 0.220.43 1.25 0.180.52 0.90 0.16

MAPE PieAPP LPIPS
0.28 1.45 0.140.11 0.63 0.060.09 0.50 0.04

PrimitiveRoom dataset ArchViz dataset

Fig. 2. Average metrics of different generators on 16 selected scenes ren-

dered with a 64 × 64 resolution (lower means better).

the proposed simulated annealing for the standard deviation of the

ACM Trans. Graph., Vol. 39, No. 4, Article 135. Publication date: July 2020.

https://doi.org/10.1145/3386569.3392475
https://doi.org/10.1145/3386569.3392475

135:2 • Granskog et al.

Observ. G-buffer GQN generator (148M parameters) U-net generator (81M parameters) Pixel generator (4M parameters) Path-traced reference

64 × 64 128 × 128 64 × 64 128 × 128 64 × 64 128 × 128 64 × 64 128 × 128

64 × 64 128 × 128 64 × 64 128 × 128 64 × 64 128 × 128 64 × 64 128 × 128

Fig. 3. Comparison of three image generators that consume (i) a neural scene representation extracted from three observations (left column; we only show

the beauty image here but each observation comes with a G-buffer), and (ii) a G-buffer (second left column) containing geometric information of directly

visible surfaces (position, normal, object ID) from the novel view of the scene. Each generator was trained with its own encoder, end-to-end, using 64 × 64

observations. We compare the quality of generated images with G-buffers rendered at resolutions 64 × 64 and 128 × 128; this defines the resolution of the final

image. Despite being smallest (labels on top report numbers of trainable parameters), the pixel generator delivers the best results overall. The most noticeable

artifacts appear on shadows and in reflections.

output normal distribution but not for the learning rate. We chose

to keep the learning rate equal for all generators. We optimized the

model using the proposed ELBO-based loss [Eslami et al. 2018].

U-net generator. Convolutional U-nets [Ronneberger et al. 2015]

with auxiliary feature buffers [Chaitanya et al. 2017; Nalbach et al.

2017] have been applied to many image-to-image translation tasks.

The main feature of a convolutional approach is the ability to ex-

tract information from a screen-space neighborhood around each

pixel. The U-net architecture, specifically, consists of encoding and

decoding stages that generate a very large receptive field, while

still allowing activations and gradients to bypass the information

bottleneck via skip connections.

The U-net consists of 7 scales and features 3 × 3 convolutions

and ReLU activation functions. In the encoder, each level ends with

2 × 2 max pooling with stride 2. The first two levels output 128 and

256 depth channels respectively whereas the following five levels

each use 512 depth channels. In the decoder, each level ends with a

4 × 4 deconvolution with stride 2. The channel counts at individual

levels mirror the encoder. We use padding to ensure that the spatial

resolution can be halved and doubled.

The scene representation r and camera parameters cv are input

at each level of the encoder; we concatenate the two vectors along

the depth dimension and duplicate them spatially to match the

resolution of the level.

Pixel generator. The pixel generator [Sitzmann et al. 2019] is a

straightforward image-to-image translation model that processes

each pixel independently with a multi-layer perceptron. The advan-

tage of the pixel generator is the multi-view consistency and better

handling of arbitrary output resolutions, both of which stem from

the reliance on information in a single pixel only. This contrasts

with convolutional approaches where the pixel neighborhood, and

thus the inferred color, generally vary across views and resolutions.

We implemented the pixel generator as 1x1 convolutions orga-

nized into ten hidden layers, each with 512 output channels. The

representation r and camera parameters cv are concatenated and

duplicated spatially to create a [w ×h × (∥r∥ + ∥cv ∥)] tensor, where
w and h are the width and height of gv , respectively. This tensor is
concatenated to the G-buffer gv and to the output of each hidden

layer.

1.2 Performance Analysis

In Figure 2, we report the average performance of individual gener-

ators measured using MAPE, PieApp, and LPIPS on a testing dataset

consisting of sixteen challenging hand-picked scenes. We observe

that the pixel generator is the top performing generator according

to all metrics followed closely by the U-net generator. The GQN

generator performed the worst; we would like to note that this ap-

proach has not been designed for image-to-image translation, which

could explain its worse performance. Interestingly, the performance

anti-correlates with the numbers of trainable parameters.

In Figure 3, we show two representative results obtained with the

three generators. Each generator was trained with its own encoder

end-to-end on 64 × 64 images from the ArchViz dataset. The figure

shows images of two, previously unobserved scenes. The observa-

tions (left column) are computed for three random positions of the

camera.

The GQN generator suffers from splotchy artifacts and blurry

edges. It appears it did not learn to properly utilize the information

in the G-buffer, which is to be expected, as it was not designed for

ACM Trans. Graph., Vol. 39, No. 4, Article 135. Publication date: July 2020.

Compositional Neural Scene Representations for Shadow Inference: Supplementary Material • 135:3

64 × 64 (training resolution) 128 × 128 256 × 256 Reference

U
-
n
e
t
g
e
n
e
r
a
t
o
r

P
i
x
e
l
g
e
n
e
r
a
t
o
r

Fig. 4. Comparison of image synthesis at different target resolutions. Using the U-net and the pixel generators at the same resolution as the model was

trained on (64 × 64, left column) gives results of similar quality. When the target resolution increases, the U-net generator suffers from shrinking of shadows

and various other artifacts. The pixel generator scales more gracefully, with the main artifact being blurry texture detail.

image-to-image translations, but rather to generate an image given

camera parameters only. The quality could potentially be further

improved at the cost of longer training times.

Scaling to high resolutions. The U-net generator and the pixel gen-

erator produce generally sharp images. The most notable difference,

however, surfaces when comparing outputs rendered at higher res-

olution than the models were trained on. We tested each generator

with G-buffer gv at two resolutions: 64 × 64 and 128 × 128—the

resolution of the G-buffer defines the resolution of the generated

image. In contrast to the U-net and GQN generators, which are both

convolutional architectures, the pixel generator handles well the

higher resolution (128 × 128) despite being trained with 64 × 64

G-buffers only.

As stated by Sitzmann et al. [2019], a key feature of the pixel

generator is its resolution independence. This is further analyzed

in Figure 4 by comparing the convolutional U-net generator and

the pixel generator. The shadows and texture details synthesized by

the U-net generator shrink as the resolution increases beyond what

the model was trained on. In contrast, the pixel generator scales to

higher resolutions gracefully. The main visual artifact is the blurry

appearance of textures. In our case, this can be fixed by providing

material (texture) information in the G-buffer, as shown in Figure 7.

Impact of G-buffer. In Figure 5, we show the performance of the

pixel generator when no G-buffer is provided and the generator

must rely on the neural representation for all information about the

scene. The quality is significantly worse than in other figures.

2 DATASETS

Here we describe the procedural recipes for generating our datasets.

Examples of both datasets are shown in Figure 6.

PrimitiveRoom dataset. This scene consists of a room with ran-

domly colored walls and a set of primitive objects that have different

materials. The scene is illuminated by a single spherical light source;

its position is randomized but intensity is the same in all configura-

tions. For geometry, we randomize the XZ-positions, Y-rotations,

and presence of objects while avoiding intersecting geometry. The

materials of objects are one of three different types: ideal mirror,

glossy specular (using the GGX distribution [Walter et al. 2007]

with roughness 0.5) and Lambertian diffuse with randomized hue.

The walls are diffuse with a random hue.

ArchViz dataset. This dataset mimics the scenario rendering in-

terior scenes for architectural visualization. Each scene is separated

into a living room area and a dining area. The presence and spa-

tial location of these areas is randomized. The dining area consists

of a table and up to four chairs that have the same material. The

sofa, the armchair, and the carpet are always diffuse with the dif-

fuse albedo being randomly selected from a continuous color map

(the sofa and the armchair have identical material). In addition to

this, we randomly place a teapot on either the table, floor, or on

the sofa table. The teapot can have any material. The diffuse walls

feature a randomly selected pattern (one out of four exemplars) and

a randomized albedo hue.

ACM Trans. Graph., Vol. 39, No. 4, Article 135. Publication date: July 2020.

135:4 • Granskog et al.

w/o G-buffer w/ G-buffer Reference

Fig. 5. Pixel generator networks can be trained without a G-buffer using

a mapping from -1 to 1 across the image dimensions. However, training

becomes slower and results are blurry compared to a network that receives

G-buffers.

There are two light sources that illuminate the room; a ceiling

light fixture aiming downwards with a randomized XZ-position,

and a large emissive quad that mimics a window. Both light sources

have their intensities and tints randomized between a light orange

and a light blue color. To investigate quality of reflections, we also

include a mirror that is placed at a random position on the back

wall of the room.

HDR images. In contrast to prior works on scene representations,

we train the generators to produce high dynamic-range images. We

apply a log(i+ 1) transform to each HDR input image i and perform
the computation in log space (including the loss evaluation). The

final HDR image is obtained by reverse-transforming the predicted

image.

3 ADDITIONAL RESULTS

In Figure 7, we provide additional results of utilizing the neural

model for synthesizing indirect illumination only. One of the objec-

tionable artifacts are the poorly handled reflections in the teapot and

the mirror on the back wall. We show how these can be improved

at the cost of providing the reflection direction in the G-buffer, or

tracing an extra reflection ray in Figure 8.

REFERENCES

Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan, Christoph Schied, Marco Salvi,

Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive Recon-

struction of Monte Carlo Image Sequences Using a Recurrent Denoising Au-

toencoder. ACM Trans. Graph. 36, 4, Article Article 98 (July 2017), 12 pages.

https://doi.org/10.1145/3072959.3073601

S. M. Ali Eslami, Danilo Jimenez Rezende, Frederic Besse, Fabio Viola, Ari S. Morcos,

Marta Garnelo, Avraham Ruderman, Andrei A. Rusu, Ivo Danihelka, Karol Gregor,

David P. Reichert, Lars Buesing, Theophane Weber, Oriol Vinyals, Dan Rosenbaum,

Neil Rabinowitz, Helen King, Chloe Hillier, Matt Botvinick, Daan Wierstra, Koray

Kavukcuoglu, and Demis Hassabis. 2018. Neural scene representation and rendering.

Science 360, 6394 (2018), 1204–1210. https://doi.org/10.1126/science.aar6170

Karol Gregor, Frederic Besse, Danilo Jimenez Rezende, Ivo Danihelka, and Daan Wier-

stra. 2016. Towards Conceptual Compression. In Advances in Neural Information

Processing Systems 29. Curran Associates, Inc., 3549–3557.

O. Nalbach, E. Arabadzhiyska, D. Mehta, H.-P. Seidel, and T. Ritschel. 2017. Deep

Shading: Convolutional Neural Networks for Screen Space Shading. Comput. Graph.

Forum 36, 4 (July 2017), 65–78. https://doi.org/10.1111/cgf.13225

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional

Networks for Biomedical Image Segmentation. In Medical Image Computing and

Computer-Assisted Intervention – MICCAI 2015. Springer International Publishing,

Cham, 234–241.

Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein. 2019. Scene Represen-

tation Networks: Continuous 3D-Structure-Aware Neural Scene Representations.

In Advances in Neural Information Processing Systems 32. Curran Associates, Inc.,

1119–1130.

Bruce Walter, Stephen R. Marschner, Hongsong Li, and Kenneth E. Torrance. 2007.

Microfacet Models for Refraction through Rough Surfaces. In Proceedings of the

18th Eurographics Conference on Rendering Techniques (EGSR’07). Eurographics

Association, Goslar, DEU, 195–206.

ACM Trans. Graph., Vol. 39, No. 4, Article 135. Publication date: July 2020.

https://doi.org/10.1145/3072959.3073601
https://doi.org/10.1126/science.aar6170
https://doi.org/10.1111/cgf.13225

Compositional Neural Scene Representations for Shadow Inference: Supplementary Material • 135:5

PrimitiveRoom dataset

ArchViz dataset

Fig. 6. Random scenes from the PrimitiveRoom and the ArchViz datasets.

ACM Trans. Graph., Vol. 39, No. 4, Article 135. Publication date: July 2020.

135:6 • Granskog et al.

(a) Reference direct illum. (b) Predicted indirect illum. (c) Reference indirect illum. (a)+(b) (a)+(c)

Fig. 7. Additional examples of predicting indirect illumination (b) only, and combining it with ray-traced direct illumination (a). The neural model utilizes a

pixel generator that consumes (i) the neural scene representation and (ii) a G-buffer of the novel view with geometry and material information, and the

direct-illumination image.

ACM Trans. Graph., Vol. 39, No. 4, Article 135. Publication date: July 2020.

Compositional Neural Scene Representations for Shadow Inference: Supplementary Material • 135:7

G-buffer + roughness G-buffer + rough. + reflection direction G-buffer + rough. + reflection hitpoint Reference

Fig. 8. Reflections can be improved by providing additional information about the reflection ray in the G-buffer. In addition to the geometry G-buffer, the

generator in the first column receives also a roughness buffer. In the second column, we show results when including also the direction of the specular-reflection

ray. In the third column, we further improve the results by providing the position and the normal of the surface point that the reflection ray hits; this requires

tracing the reflection ray.

ACM Trans. Graph., Vol. 39, No. 4, Article 135. Publication date: July 2020.

	1 Image Generators
	1.1 Implementation Details
	1.2 Performance Analysis

	2 Datasets
	3 Additional Results
	References

