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We present a technique for adaptively partitioning neural scene representa-

tions. Our method disentangles lighting, material, and geometric information

yielding a scene representation that preserves the orthogonality of these

components, improves interpretability of the model, and allows compositing

new scenes by mixing components of existing ones. The proposed adaptive

partitioning respects the uneven entropy of individual components and

permits compressing the scene representation to lower its memory footprint

and potentially reduce the evaluation cost of the model. Furthermore, the

partitioned representation enables an in-depth analysis of existing image

generators. We compare the flow of information through individual parti-

tions, and by contrasting it to the impact of additional inputs (G-buffer), we

are able to identify the roots of undesired visual artifacts, and propose one

possible solution to remedy the poor performance. We also demonstrate the

benefits of complementing traditional forward renderers by neural represen-

tations and synthesis, e.g. to infer expensive shading effects, and show how

these could improve production rendering in the future if developed further.
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1 INTRODUCTION

Data-driven realistic image synthesis has recently achieved a num-

ber of notable breakthroughs, such as rendering realistic human

faces [Karras et al. 2018], or high-quality relighting of photographs

[Philip et al. 2019]. Remarkable achievements have been demon-

strated also in data-driven simulation of light transport, where neu-

ral networks predict various radiative quantities [Hermosilla et al.

2019; Kallweit et al. 2017; Nalbach et al. 2017; Ren et al. 2013] or

improve their unbiased estimation [Müller et al. 2019; Zheng and

Zwicker 2019]. Common to all these is the utilization of neural net-

works to perform the task in its entirety, all at once. The black-box

nature, however, hinders interpretability, generalization, and makes

further development less intuitive.
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Fig. 1. We present an approach for extracting adaptively partitioned, com-

pressible neural scene representations of 3D scenes that disentangle lighting,

material, and geometry information. The compositionality of the repre-

sentation aids interpretability and analysis of the inner workings of the

model, which are key for remedying visual artifacts and combining neural

approaches with traditional forward renderers.

An alternative approach to performing the synthesis at once is to

introduce an intermediate neural scene representation [Eslami et al.

2018; Kulkarni et al. 2015; Sitzmann et al. 2019], by breaking the

rendering task into: (i) extracting a learned scene representation,

and (ii) using it to render an image. The intermediate (latent) scene

representation allows enforcing certain behaviors upon the model,

e.g. ensuring consistency of images rendered from different views of

the scene. It also presents an opportunity for increasing robustness,

improving generalization, and accelerating training by injecting

physically-based constraints to regularize the model. While the

scene complexity and rendering quality of these approaches may

appear limited at present, it is foreseeable that these will improve in

the future, especially if the neural renderer merely augments classi-
cal rendering pipelines. The key advantage of the neural approach

is the end-to-end training, which allows the neural representation

to carry information that is complementary to classical inputs and

tailored to the task at hand. We carry out our investigations in one

such scenario, where a classical rasterizer determines directly visible

objects and the neural renderer infers their appearance.

We present two distinct contributions in this article. First, we ex-

tend the works of Eslami et al. [2018] and Sitzmann et al. [2019] with

mechanisms to disentangle material, lighting, and geometric con-

tent of the scene. We do not prescribe a specific encoding between

images and the latent scene representation (this shall be extracted

from data), but we introduce additional constraints to adaptively
partition the latent scene representation. The adaptive partitioning

ameliorates interpretability of the representation, permits tracing
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the roots of poor rendering quality, and allows compressing the

neural scene representation.

Our second contribution, enabled by the adaptive partitioning, is

an analysis of generated images with respect to the extracted scene

representation and the encoded observations. The analysis yields

valuable insights into the inner mechanisms of the neural model

and guides the design of techniques for remedying objectionable

artifacts and poor performance. Specifically, attributing pixel colors

in problematic regions to individual partitions revealed lack of geo-

metric information in the representation; an issue that we address

by adding an auxiliary image generator to steer the model towards

capturing more geometry.

While the primary focus in this article is on disentanglement and

compositionality, we also tease with an example of how neural scene

representations could augment classical game and film renderers

in the future. We use a ray tracer to render an image with direct

illumination, and combine it with an indirect-illumination image

synthesized by the neural image generator. Employing neural scene

representations in such scenarios enjoys a different set of constraints

and conveniences than other (e.g. computer vision) problems. We

exploit the main convenience—the existence of a 3D scene model—

and provide the neural generator with geometry information (G-

buffer) of novel views. We draw inspiration and architectures from

works where a 3D model is not available; the focus is on extracting

it [Eslami et al. 2018; Sitzmann et al. 2019], but we leverage these

architectures to complement the strengths of classical renderers,

rather than replacing them. Finally, we demonstrate the benefits

of compositional neural scene representations on the application

of relighting: we create novel scene configurations by exchanging

lighting partitions of different scenes.

Scope. Our method partitions the neural representation via ex-

plicit constraints enforced during training. The underlying neural

model is non-probabilistic and relies on inputs from classical render-

ers. Nevertheless, the proposed mechanism for encoding adaptive,

compressible neural representations is universal and applicable to

other neural architectures and approaches.

2 RELATED WORK

Next, we review recent methods utilizing neural networks for ren-

dering, discuss techniques for representation learning, disentan-

glement, and attribution, and point out hybrid renderers that bear

similarities to our approach. We refer the reader to a recent survey

by Tewari et al. [2020] for a more complete overview.

Neural scene representations. A recurring approach to render a

scene using neural networks is to start from a voxel grid represen-

tation, along with a camera pose and light position. This has been

applied to simple shading models [Nguyen-Phuoc et al. 2018] or to

a single object with global illumination [Rematas and Ferrari 2019].

Our method can also render these effects, but is not restricted to

a single object, and can scale to more complex scenes as it does

not incur the memory overhead of a voxel grid. Lombardi et al.

[2019] reduce the memory requirements and artifacts of voxel grids,

while Sitzmann et al. [2019] replace it altogether with a learned 3D

scene representation obtained using a differentiable ray-marcher.

Tatarchenko et al. [2016] compress a single image into a repre-

sentation for novel view synthesis. Rendering of novel views is also

achieved by Thies et al. [2019] who learn neural textures of objects.

However, all lighting and shading is “baked” and cannot be edited

easily. Our method is designed to avoid such baking. We build upon

generative query networks (GQNs) [Eslami et al. 2018], which are

composed of two core components: an encoder that extracts a scene

representation from multiple observations, and a generator that

synthesizes the novel view. The lengthy optimization procedure

of GQNs (weeks of training) led to the development of more effi-

cient losses [Nguyen-Ha et al. 2019] and exploitation of geometric

information [Tobin et al. 2019]. We take a different approach: we

accelerate image generation by leveraging geometric features of the

novel view (G-buffer) and using the pixel generator [Sitzmann et al.

2019] architecture instead of the original probabilistic approach uti-

lizing LSTM cores [Eslami et al. 2018]. This significantly accelerates

training (days instead of weeks) and improves accuracy.

Disentanglement and user control. Disentanglement has been pre-

sented as a key attribute of robust representations [Bengio et al.

2013] and interpretability [Chen et al. 2016], but also as crucial to

controllable generation [Nie et al. 2020]. Multiple approaches have

been explored to introduce user control, such as latent-space trans-

formations [Nguyen-Phuoc et al. 2019; Olszewski et al. 2019], or

disentanglement of the latent variables using unsupervised [Chen

et al. 2016; Higgins et al. 2017] or (semi-)supervised methods [Kulka-

rni et al. 2015; Nie et al. 2020]. Our work builds upon the technique

proposed by Kulkarni et al. [2015]: they modify a single aspect

of the scene per training batch and average the activations and

adjust gradients for partitions encoding other (static) aspects. We

employ this technique to partition lighting, material, and geometry

in the representation, and extend it to obtain adaptively partitioned,

compressed scene representations.

Interpretability and Attribution. An underlying goal of our work

is to gain insights into data-driven image synthesis by attributing

the outputs to individual components of the model. Du et al. [2019]

classify interpretability as either global or local. Global interpreta-

tion, which relates a model behavior to the network parameters and

structure, is facilitated by our proposed adaptive partition scheme.

Local interpretability, which relates a model output to its inputs,

can be achieved through perturbation-based [Wagner et al. 2019;

Zeiler and Fergus 2014] and gradient-based [Ancona et al. 2018;

Shrikumar et al. 2017] methods; we use the latter type. While these

are commonly used in the context of classification, we perform at-

tribution on a pixel basis, that is, we attribute each pixel value to

the extracted scene representation, which in turn can be related to

the input observations to get a complete view of data flow.

Hybrid Renderers. Augmenting traditional renderers using data-

driven techniques has a long and successful history. Early successes

in data-driven lighting [Debevec 1998] and material modeling [De-

bevec et al. 2000; Matusik 2003] have had a profound impact on

rendering pipelines, both for real-time and offline applications. Re-

cent work has turned to deep learning techniques, for instance to

model subsurface scattering [Vicini et al. 2019], approximate multi-

ple scattering in clouds [Kallweit et al. 2017], or approximate light
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Fig. 2. In order to generate an image, we utilize a view-independent neural scene representation r and a G-buffer rendered using a classical renderer from a

novel view v . The scene representation is extracted from n (high-quality) observations of the scene. Each i-th observation, which consists of a color image ii ,
G-buffer gi , and camera parameters ci , is processed using a neural encoder to produce a vector ri . These vectors are averaged across all observations to obtain

the neural scene representation r (pink box). For a novel view v , the representation r, camera parameters cv , and G-buffer gv are fed into an image-generating

neural network to obtain an image of the scene from v . This model is largely similar to the one proposed by Eslami et al. [2018]—the main difference is the use

of G-buffers. The focus of this paper is on adaptively partitioning the neural scene representation r.

transport in screen space [Nalbach et al. 2017]. Hybrid renderers

have also gained traction in computer vision applications, such as

video retargeting [Kim et al. 2018], due to their increased realism.

Similarly to these approaches, we propose to integrate data-driven

image synthesis in the rendering pipeline, but we do so in a more

general setting allowing the model to synthesize arbitrary (residual)

components of light transport, which complement existing ren-

dering techniques. We show examples where the image generator

translates a G-buffer into a shaded image, or a G-buffer with direct

illumination into an indirectly lit image only. Our model bears simi-

larities with Deep Shading [Nalbach et al. 2017]; the main difference

is the utilization of the neural scene representation (and the encoder)

that provides complementary information to the G-buffer.

3 BACKGROUND AND MODEL OVERVIEW

Our goal is to leverage neural scene representations to improve tra-

ditional forward-rendering tasks, in which a virtual 3D scene is ren-

dered into a 2D image. We draw inspiration from prior works, where

one neural network—scene encoder—builds a scene representation

that is then passed to another network—image generator—that syn-

thesizes a novel image of the scene [Eslami et al. 2018; Kulkarni

et al. 2015; Sitzmann et al. 2019].

The individual components of our rendering system (see Figure 2)

are based on previously published techniques; we do not claim nov-

elty in their design. Our original contributions, described in Section 4

and Section 5, pertain to the combination of these components, as

well as the optimization and analysis of the resulting model.

The rest of this section discusses individual components of the

model, the inputs, datasets, and loss functions used in our tests.

3.1 Scene encoder

The task of the scene encoder is to extract relevant information

from n scene observations {(ci , ii , gi )}i=1..n and compress it into

a neural scene representation r. In our case, observation i consists
of a view matrix identifying the camera view ci , a color image ii
that contains all light transport we wish to reproduce later, and

a G-buffer gi that contains geometry features of visible surfaces

obtained as a byproduct of rendering the color image.

The main component of the encoder is a convolutional neural

network R, which extracts a partial, high-dimensional scene rep-

resentation ri for each observation i: ri = R(ci , ii , gi ). We use the

pool architecture [Eslami et al. 2018] for the encoding network R.
The network takes a tensor of concatenated image buffers (ii , gi )
and processes them with strided convolutions. The viewpoint pa-

rameters ci are shaped into a tensor and concatenated to the output
tensor of one of the convolutional layers in the middle of the net-

work. The last component of the network is a pooling layer that

outputs a 1× 1×k vector ri where k is the number of desired values

in representations; see [Eslami et al. 2018] for details.

All partial representations are combined to obtain a (more) com-

plete representation of the scene using an order-independent ag-

gregator; we use componentwise averaging: r = avg ({ri }k=1..n ).
Alternative aggregators such as summation, attention networks, and

max pooling have been explored by Eslami et al. [2018], Rosenbaum

et al. [2018], and Deschaintre et al. [2019], respectively.

3.2 Image Generator

The purpose of the image generator is to synthesize an image from

a novel, unobserved view v of the scene. The generator receives: (i)

parameters of the camera cv , (ii) a G-buffer gv rendered using a tra-

ditional renderer from the novel viewv , and (iii) a view-independent
scene representation r extracted by the encoder.

Numerous architectures have been proposed for neural image

synthesis. In what follows, we utilize two image-to-image trans-

lation models: the convolutional U-net architecture [Ronneberger

et al. 2015] and the pixel generator [Sitzmann et al. 2019].

Themain strength of the convolutional U-net is the large receptive

field, i.e. the ability to source information from distant pixels in the

G-buffer. In contrast, the pixel generator—being a simple multilayer

perceptron—processes each pixel independently and cannot rely on

pixel neighborhoods; this has been leveraged as a strength to ensure

multi-view consistency [Sitzmann et al. 2019].

Please see the supplementary material for illustrations of the

architectures, implementation details, and an expanded analysis of

the strengths and weaknesses including also the GQN generator

proposed by Eslami et al. [2018].
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W/o scene representation W/ scene representation Reference

Fig. 3. In most of our experiments, the neural scene representation provides

all material and lighting information, and information about geometry

outside the camera frustum. Without it (left) the image generator can still

synthesize images using the information in the G-buffer, but it learns to

produce average appearances and lighting in the training set.

3.3 G-buffer Content

The encoder and the generator utilize G-buffers rendered from the

observed locations and from the novel view, respectively. This has

the benefit of accelerating the optimization, improving the image

quality, and allowing smaller, faster image generators to perform

well. In this paper, the decision of what surface features to include in

the G-buffer is driven by the ease of analysis and interpretability of

the learned scene representation. We chose to include only geometry
information in the G-buffer, namely world-space positions, normals,
and object identifiers. Information about materials, lighting, and

offscreen or occluded geometry is delivered to the generator only

through the neural scene representation. Figure 3 demonstrates the

impact of the scene representation on generated images.

The distinct separation of scene properties allows analyzing the

flow of information inside the model. A more practical scenario,

where the G-buffer contains also material and lighting information,

is discussed in Section 6.1.

3.4 Datasets and Optimization

We use two datasets in our experiments. Each dataset consists of

144k procedurally generated instances; a detailed generation recipe

is provided in the supplementary material. The color images (see

Figure 4 for examples) were rendered using path tracing and feature

multi-bounce effects, such as color bleeding and mirror reflections.

The visually simple PrimitiveRoom dataset contains rectangular

rooms with a small number of geometric primitives. The primitives

vary in shape, position, and rotation and feature a random instance

of either a Lambertian diffuse material, a glossy material, or an ideal

mirror. The scene is illuminated by a single spherical emitter.

The ArchViz dataset consists of variations of a living room with

a dining area. While still rather simple, the geometry, materials, and

lighting are biased towards an apartment design. The variations are

created by randomizing the luminaire and furniture placement, and

by varying the (textured) albedo and roughness of materials.

Optimization. We train the models end-to-end using the Adam

optimizer [Kingma and Ba 2015] with a learning rate of 10
−4

and

PrimitiveRoom dataset

ArchViz dataset

Fig. 4. Random scenes from the PrimitiveRoom and the ArchViz datasets.

minibatches consisting of 16 scenes. For each scene, we construct the

neural scene representation by encoding three random observations

with 64×64 resolution. The resolution of the G-buffer gv fed into the

image generator is also 64× 64 during training, but it is increased at

test time in most of our figures. We use a loss comprising a pixelwise

L1 error term and a structural dissimilarity (DSSIM) term, which we

empirically found to work well when scaled to have approximately

equal magnitude. We optimize using one million batches, which

amounts to 111 training epochs and requires about 8.5 days of

training on a single NVIDIA Tesla V100 GPU.

Once a model is trained, we use it to generate images of a novel,

previously unobserved scene in the following way. We use a tradi-

tional renderer to render the scene from three random 64×64 camera

views (observations). The observations, i.e. the camera parameters,

G-buffers, and color images, are passed to the scene encoder to ob-

tain a view-independent scene representation r. To generate a novel
view, we pass r and the parameters of the view (and the G-buffer)

to the image generator, which synthesizes a new color image. We

use scene representations with 128 to 512 dimensions.

4 COMPOSITIONAL SCENE REPRESENTATION

Our goal in this article is to impose a structure over the neural scene

representation such that it respects the orthogonalities between

individual scene properties. In Section 4.1, we apply the static parti-

tioning approach of Kulkarni et al. [2015], and extend it to enable

adaptive, compressive partitioning of the neural scene representa-

tion in Section 4.2. Our method adaptively disentangles the lighting,
geometry, and material properties of scenes in one dataset, and

stores them in disjoint partitions RM , RL , and RG , respectively.

The adaptive partitioning has a number of advantages: (i) it re-

spects the degree of variation of each component, (ii) it improves in-

terpretability of the scene representation and provides insights into

the inner mechanisms of different neural architectures—Figure 14,

and (iii) it permits basic compositing operations, such as swapping

lighting information between different scenes—Section 6.2.

ACM Trans. Graph., Vol. 39, No. 4, Article 135. Publication date: July 2020.
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Fig. 5. In contrast to the monolithic scene representation (left) our parti-

tioned scene representation (right) splits scene information into lighting

(yellow), geometry (blue), and material (red) partitions. Each row shows

the average standard deviation in each dimension of the representation

when only lighting (top row), geometry and materials (middle row), or only

materials (bottom row) are randomized across a large set of scenes.

4.1 Static partitioning

Denoting R as the latent space of the scene representations, we

split R into three non-overlapping partitions of equal size, ∥RM ∥ ≈

∥RL ∥ ≈ ∥RG ∥ ≈ ∥R∥/3, that will contain (most of) material, light-

ing, and geometry information. In order to force each partition to

hold only the desired information, we adopt the method of Kulkarni

et al. [2015] to disentangle scene components by carefully averaging

scene representations and adjusting gradients during training.

Specifically, Kulkarni et al. [2015] propose to train networks us-

ing batches where only one scene property varies. During forward

propagation, activations in dimensions that store all the other prop-

erties are averaged; these batch-invariant properties should lead to

identical activations for all entries in the batch. During backprop-

agation, the partial derivatives in dimensions for batch-invariant

properties are adjusted; the gradient is replaced by its difference

from the per-dimension mean. Using the differences nudges the

encoder towards producing activations that are closer to the mean.

Example. Wemay decide to randomize, for instance, the materials

across the batch and keep lighting and geometry identical across all

batch entries. For each entry we first compute the scene representa-

tion with the scene encoder. We then modify activations in lighting

and geometry partitions by averaging each dimension across the

batch. During backpropagation, we compute loss gradients with

respect to the scene representations; one for each entry in the batch.

Then we compute the mean partial derivative for each lighting and

geometry dimension across the batch, and set the derivative in those

dimensions to its difference from the mean. The backpropagation

then continues to update the weights of the scene encoder.

The aforementioned algorithm by Kulkarni et al. will ensure that

each scene component, i.e. lighting, geometry, and materials, is

stored primarily in its own partition. Figure 5 demonstrates the dif-

ference between a monolithic and partitioned neural representation.

Each bar in the six charts represents the average standard deviation

of activations in one dimension across many scenes, where only

lighting (top), geometry and materials (middle), or only materials

(bottom) are varied. We choose to vary geometry and materials

jointly in the middle row since it is difficult to modify geometry

without affecting materials. This is a side-effect of changing object

visibility in the observation views across a batch.

Partition p− Partition p ;d ∈p Partition p+

b−(p) d b+(p)

S
(
α (x − b+(p))

)
wp (d )

wp− (d )

wp+ (d )

Fig. 6. We adaptively partition the scene representation and assign each

dimension d to three consecutive partitions. The contribution of d to a

partition is modeled using sigmoids ("S"-shaped curves), which are centered

at partition boundaries, and progressively sharpened during optimization.

4.2 Adaptive partitioning

The main drawback of a statically partitioned representation is

that it strictly defines the number of bits used to store each scene

component, e.g. the lighting partition occupies the first third of the

representation. This constraint, which is not present in monolithic

representations, is undesired. We now discuss a mechanism for

optimizing the partition sizes during training.

For a scene representation with k partitions, we add a trainable tu-

ple s := (s1, . . . , sk ); si ∈ R, to the scene encoder, which defines the

sizes of partitions. For the i-th partition, the left boundary b−(i) and
the right boundary b+(i) are computed by summing up (softmaxed)

size parameters of preceding partitions: b−(i) = ∥R∥ ·
∑i−1
j=1 σ (s)j ,

and adding the size of the i-th partition: b+(i) = b−(i) + ∥R∥ · σ (s)i ,
respectively. The softmax function σ ensures that the learned sizes

form a partition of unity.

To allow gradient-based optimization of s, we use fuzzy parti-

tion boundaries. A given dimension d of the representation located

within a boundary region is shared by multiple partitions: a center

partition p, and left and right neighboring partitions, p− and p+,
respectively. The contribution of dimension d to each partition is

given by the following weights:

wp (d) = 1 −wp− (d) −wp+ (d) , (1)

wp− (d) = 1 − S
(
α(d − b−(p))

)
, (2)

wp+ (d) = S
(
α(d − b+(p))

)
, (3)

where S is the sigmoid function used to model the fuzzy boundaries;

see Figure 6. The parameter α controls the spread of the sigmoid;

we progressively increase α during training to approach a step

transition in the limit, resulting in a disjoint partitioning.

We treat the representation vector as a circular domain, where

the last and first partitions are adjacent. The first partition then

acts as the right neighbor of the last partition, and vice versa. All

partitions have the same initial size set to ∥R∥/(k + 1).

Analysis and discussion. As the optimization progresses, the parti-

tions trade dimensions to best distribute the bits for storing relevant

scene properties, as shown in Figures 7 and 8. Initially, the lighting

partition grows at the cost of other partitions. This is likely due to

the loss function being more sensitive to pixel brightness than to

color hue. Once the lighting is predicted sufficiently well, the models

focus on extracting material information to correctly predict colors.

When converged, the material partition is typically larger than the

ACM Trans. Graph., Vol. 39, No. 4, Article 135. Publication date: July 2020.
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Fig. 7. Adaptive partitioning distributes dimensions of the scene represen-

tation between lighting (yellow), geometry (blue), and material (red) com-

ponents of the scene. The curves show relative sizes of individual partitions

and how they evolve during training on the PrimitiveRoom dataset; they

stabilize around 1M batches. Note how the partitions become smaller when

a null partition (right, black curve) is added to compress the representation.

lighting partition as lighting in our scenes can be represented with

fewer dimensions.

The geometry partition initially shrinks as the generators can

rely on the G-buffer (e.g. position and normal buffers). It grows back

once lighting effects due to objects that are not directly visible by the

camera (e.g. reflections) start dominating the loss. Comparing the U-

net generator (top row) and the pixel generator (bottom row) we see

that the pixel generator forces the encoder to put more information

into the geometry partition. This is to be expected as the pixel

generator cannot rely on pixel neighborhoods in the same way as

convolutional approaches. In general, the convolutional generators

(U-net and GQN analyzed in the supplementary material) utilized

the geometry partition less in all our experiments.

In Table 1, we show how the scene representation adapts to

datasets with different complexity of lighting and materials. The

“many lights” dataset features scenes with up to 10 randomly placed

light sources in each scene. The optimization yields a larger lighting

partition than in the “many materials” dataset, where scenes contain

always a single light source, but the material complexity is doubled

compared to the “many lights” dataset.

Table 1. Relative partition sizes of models trained on variations of the Prim-

itiveRoom dataset with different degrees of material and lighting variation.

Many lights Many materials

Lighting partition 39% 30%

Geometry partition 20% 23%

Material partition 37% 43%

Null partition 4% 4%
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(a) Adaptive partitioning (b) Adaptive w/ null partition (black)

Fig. 8. Same as in Figure 7 but trained on the ArchViz dataset.

Monolithic Static partitioning Adaptive partitioning

MAPE PieAPP RMSE
0.09 0.59 0.070.14 0.66 0.080.13 0.66 0.09

MAPE PieAPP RMSE
0.05 0.35 0.120.05 0.37 0.160.05 0.36 0.14

PrimitiveRoom dataset ArchViz dataset

Fig. 9. Average metrics of the pixel generator model with no partitioning,

static partitioning, and our adaptive partitioning (lower means better).

Performance assessment. In order to analyze the penalties due to

imposing static and adaptive partitioning mechanisms, we compare

the quality of synthesized images using three error metrics: mean

absolute percentage error (MAPE), PieAPP
1
[Prashnani et al. 2018]

and root mean square error (RMSE). Figure 9 shows the average

performance for (i) a monolithic scene representation, (ii) statically

partitioned representation, and (iii) our adaptively partitioned rep-

resentation. The height of each bar corresponds to the mean value

of the metric across 4000 test scenes that were generated using the

same recipes as training scenes, but were excluded from training.

Partitioning the representation comes at a penalty in prediction

accuracy; similar tradeoffs have been reported in prior work [Nie

et al. 2020]. Static partitioning (dark blue) tends to yield the worst

results as the static sizes of some partitions may be inappropriately

small given the entropy of corresponding scene components. Our

adaptive partitioning (green) mitigates this issue by optimizing the

bit allocation in the representation, however, it still inherits the

tradeoff in prediction accuracy due to enforcing disentanglement.

1
We first gamma-correct the high dynamic-range images (γ = 2.2), clip the values to

range [0, 1], and quantize them using 8 bits per channel.
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∥R ∥ − ∥R∅ ∥ ∥R ∥=128→49 ∥R ∥=256→51 ∥R ∥=512→57 Uncompressed Reference

Fig. 10. The null partition allows compressing the scene representation. We plot the total size of non-null partitions, ∥R ∥ − ∥R∅ ∥, during training for three

models with ∥R ∥ available dimensions equal to 128, 256, and 512. The parameter that controls the compression is identical in all cases; β = 4 · 10−4. Images

labeled with ∥R ∥=X →Y were rendered after 400k training iterations, at which point the representations shrunk to 49, 51, and 57 dimensions, respectively.

Their visual quality is comparable, but lower than in the case of an uncompressed representation; e.g. we lose the color of the teapot.

β = 4 · 10−4 β = 4 · 10−5 β = 4 · 10−6 Reference

∥R ∥=256→51 ∥R ∥=256→180 ∥R ∥=256→228

Fig. 11. Quality of generated images as a function of β , which scales the loss

term induced by the total size of material, lighting, and geometry partitions.

The differences are best visible on the teapot and on shadows.

4.3 Null partition

Adaptive partitioning allows trading bits of the representation be-

tween partitions. However, the scene representation will always

use all the available space, even in cases when it could be well-

represented using fewer bits. We address this by adding a null parti-
tion R∅ , which does not influence the image generator, and serves

only as a reservoir of unused (available) dimensions.

In order to incentivize the optimization to grow the null partition,

and thereby compress the scene representation, we add a penalty

term β(∥R∥ − ∥R∅ ∥) to the loss function, which is proportional to

the number of dimensions in all other (non-null) partitions.

Analysis and Discussion. Figures 7 and 8 show the impact of the

null partition on the optimization. The partition sizes at 1M itera-

tions better represent the volume of extracted lighting, geometry,

and material information than the uncompressed plots (left) as the

model utilizes fewer dimensions to represent them.

The null partition removes the burden of guessing the optimal

size of the neural scene representation. One can over-allocate the

space conservatively and rely on the optimization to grow the null

partition appropriately. We confirm this in Figure 10 that plots the

total number of lighting, geometry, and material dimensions in three

models that initially allocate 128, 256, and 512 dimensions for the

representation. All models gradually reduce the number of utilized

dimensions to similar counts (49, 51, and 57 dimensions after 400k

training iterations); the remaining dimensions are assigned to the

null partition. The rendering quality is comparable between the

three models, but lower than in the case of uncompressed represen-

tation. The tradeoff between the compression ratio and the loss of

information can be controlled by adjusting β , as shown in Figure 11.

5 ATTRIBUTION, ANALYSIS, AND IMPROVEMENTS

The partitioning of the scene representation allows us to attribute

visual artifacts and poor image quality to specific information that

is missing or incomplete in the representation. In this section, we

utilize the gradient × input attribution method [Shrikumar et al.

2017] to measure the sensitivity of generated images to the neural

scene representation, the observations, and the G-buffer.

In cases where we compute the attribution of a collection of

output values (e.g. for an image patch or an entire partition of

the representation) we compute the gradient × input products for

individual elements and sum their absolute values to obtain a single

attribution scalar.

5.1 Attribution of Partition Activations

In Figure 12, we attribute activations in partitions of the represen-

tation to the color, position, and normal channels of two encoded

observations. The yellow, blue, and red color shades in the bottom

row correspond to attributions of the lighting, geometry, and mate-

rial partition, respectively. For each pixel, we first compute three

attribution scalars—one per partition. Each scalar is then mapped to

color shades of the corresponding partition, and the colors are added

together. Brighter values indicate higher magnitude of attribution,

white signifies high influence on all partitions.

Each partition is attributed to fairly large spatial regions, although

certain regions are attributed more than others. For example, high

intensities can be observed on the floor, while walls are typically

darker. We interpret this as a strong signal that the model specializes

to the biases of the dataset, in which most variations occur on the

floor (e.g. due to random placement of the furniture and its shadows)

and little information needs to be sourced from the walls (only

textures and the position of the mirror frame).

The lighting partition (yellow shades) is mainly attributed to

regions with visible emitters and to the floor. The emitter intensity

needs to be inferred from the color channel, and its contribution can

be inferred with the help of additional information in the position

and normal channels. We hypothesize that shadow patterns on the

floor (color channel), in conjunction with geometry information

about the shadow casters (position and normal channels) contribute

to the localization and intensity of emitters. In fact, these are the

most prominent cues if the emitter is not directly visible in any of

the observations. The relatively weak attribution to the wall emitter,

specifically to the position and normal channels of observation 2
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Fig. 12. Attribution of activations in the neural scene representation to

the color, position, and normal channels of two observations (top row). The

yellow, blue, and red shades in the bottom row correspond to attributions

of the lighting, geometry, and material partitions; brighter means stronger

attribution.

(right part of the image), is due to its identical placement in all

scenes; only its intensity is randomized in the dataset.

The geometry partition (blue shades) is attributed to regions

where objects “move” during training. Since the walls are static

across the dataset, they have low attributions except for locations

where the light fixture or the mirror may appear, as well as locations

where the wall may be occluded by another object.

The material partition (red shades) is mainly attributed to regions

with randomized materials, such as walls, furniture, and the teapot.

It is also attributed to the emitters (albeit not strongly) as the model

needs to “undo” the effects of lighting to recovermaterial appearance

correctly, and to avoid baking illumination effects into the neural

analog of material textures.

Figure 12 attributes entire partitions of the representation. The

partitions are responsible for encoding the entire scene such that

arbitrary viewpoints can be generated, hence the attributions cover

nearly all pixels of the observations andmay be hard to interpret pre-

cisely. In the next section, we perform a finer analysis by attributing

the colors of small pixel regions in the generated image.

5.2 Attribution of Generated Colors

In Figure 13, we attribute generated colors to dimensions in the

neural scene representation (middle) and to the observations (left

columns) that the representation was extracted from. We use the

pixel generator to obtain the generated image.

Reflections. The orange patch focuses on a reflection of a light

fixture seen through amirror surface. Since the corresponding pixels

of the G-buffer contain information only about the mirror, and no

information about the reflected objects, the generator needs to rely

on the scene representation to produce colors of the reflected light

fixture. Note that the reflection is in neither of the observations, but

the lighting fixture itself is directly observed and the corresponding

pixels in the observations have large impact on the reflection; their

attribution is high. This indicates that the network is capable of

synthesizing view-dependent reflections.

The red patch is placed on a mirror teapot, which reflects large

portions of the scene, including the light fixture. The colors in the

red patch are thus attributed to all partitions of the representation

as reflections require all scene components. In the observations the

colors are strongly attributed to the light source as it illuminates

the reflected surfaces, but also to the teapot itself when visible.

Materials. The blue patch focuses on the textured wall. The gen-

erated colors should depend on the incident illumination and the

material of the wall. This is confirmed by the representation attribu-

tion, where the lighting partition (yellow background) and material

partition (red background) have high attribution values, and also by

the observations, where the attribution is high on the light fixture

and the walls. Since all textures used during training were periodic,

the texture pattern can be detected from any region of the wall,

although some regions are preferred over others; we attribute this

to biases in the stochastic placement of the camera.

Shadows. The green patch focuses on a shadow boundary due to

the table and the light fixture. The representation attributions show

that the lighting and geometry partitions are mainly responsible

for the synthesis of this shadow region. The material partition is

not attributed because we used the same glossy gray material for

all floors in the ArchViz dataset. The floor material is thus likely

embedded in the generator and the encoder was not forced to ex-

tract it. As expected, the shadow boundary is attributed to the light

fixture and the pixel region around the table and the chairs in the

observations.

5.3 Attribution to Representation and G-buffer

We now study whether the generator relies more on the scene

representation or the G-buffer, and demonstrate that this balance

may be specific to the architecture of the generator.

In the top row of Figure 14, we analyze the quality of synthesized

shadows in a simple scene that contains a cylindrical shadow caster.

In the left configuration, the cylinder appears in the camera frus-

tum and is therefore captured by the G-buffer. The generators can

rely on the G-buffer to identify its shape and position. In the right

configuration, the cylinder is outside of the frustum—we observe

only its shadow. The position and shape of the shadow caster can

be inferred only from the neural scene representation.
The table below the images attributes the predicted colors in the

red patches to (i) the partitions of the neural scene representation

(top three rows) and (ii) the channels of the G-buffer—we used

positions and normals in this experiment (bottom two rows). Each

cell in the table was computed by summing the gradient × input

values across all elements of the respective partition (or the G-

buffer channel) and averaging the sums across the pixels in the red

patch. We normalized all values within each column and list them

as percentages to drive the focus on relative comparisons.

The table indicates that the pixel generator relies primarily on

the neural scene representation (for pixels in the red patch) with

the geometry partition being attributed the most (48%). In contrast,

the U-net generator barely utilizes the geometry partition (4%) and

sources information about geometry almost exclusively from the

G-buffer (45% of all attribution). This poses a problem when the

shadow caster is outside the camera frustum: the G-buffer contains

no information about the caster and the U-net generator is unable

to predict the shadow.
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Fig. 13. We attribute the colors of four patches in a generated image (left) to dimensions in the neural scene representation (middle), and to the color,

position, and normal channels of the three observations (right) that the representation was extracted from. Each bar in the attribution histograms shows the

contribution of one dimension of the representation to the patch; the bar height corresponds to the aggregate attribution. On the right, we propagate the

attribution through each partition to individual observations and their channels. A blue shade, for instance, indicates that an observation pixel contributed

geometry information (through the geometry partition) to the generated patch; the brightness corresponds to the aggregate attribution.

In-view shadow caster Out-of-view shadow caster
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Fig. 14. Shadow synthesis in a scene with a directly visible shadow caster

(left pair) and with the same shadow caster being out of the view (right

tripple). The pixel generator and the U-net generator are both able to syn-

thesize shadows of visible shadow casters. However, when the caster is out

of the view, the U-net fails to produce the shadow since it relies primarily

on the G-buffer. This is evidenced in the table below that lists relative attri-

butions (gradient × input) averaged over the marked pixels. Combining the

U-net generator with an auxiliary pixel generator increases the attribution
to the geometry partition, from 10% to 17%, and helps the U-net to correctly

synthesize the shadow.

The results of this comparison are not entirely unexpected. Pixel

generators, which access one pixel at a time, force the encoder to put

more information about the geometry into the scene representation

(as already suggested by Figures 7 and 8) and their performance

is thus less impacted by the content of the G-buffer. The U-net

generator—being convolutional—has a strong ability to source in-

formation from pixel neighborhoods in the G-buffer, but fails when

the G-buffer lacks key information. This occurs whenever objects

occlude each other or reflect surfaces not present in the view. The

resulting artifacts are distracting, but do not appear sufficiently

often during training to “teach” the U-net generator to utilize the

geometry partition of the neural representation. We address this

issue in the next section.

5.4 Auxiliary Generators

Our goal here is to force the scene encoder to extract information

that may be underrepresented, but vital for good performance in

certain situations. We employ an auxiliary generator [Philip et al.

2019] that is trained concurrently with the main generator, but

focuses on the failure cases.

Specifically, to rectify the poor performance of the U-net genera-

tor on shadows due to invisible casters, we add a pixel generator

that is optimized to produce shadows—grayscale images of (par-

tial) visibility of light sources. The output of the auxiliary “shadow”

generator is fed into the U-net generator. The loss function of the

auxiliary generator is the same as the loss function of the main

generator; except we evaluate it on reference shadow images. The

losses are summed together.

Adding the auxiliary generator can be interpreted as changing

the loss function, but it has the key benefit of impacting primarily
the scene encoder of the original model; it keeps the loss of the

original generator intact. Since both generators use the same scene

representation during training, the auxiliary generator steers the

encoder to extract the missing information. The second, and likely

the key benefit in this specific case, is the shadow image that the aux-

iliary generator provides to the U-net. The right column in Figure 14

illustrates the improvement of the U-net generator after adding the

auxiliary shadow (pixel) generator—the model draws more infor-

mation from the geometry partition (the attribution increases from

10% to 17%) and succeeds in synthesizing the shadow.
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Pixel generator + aux. shadow generator Reference

Fig. 15. Adding an auxiliary shadow (pixel) generator steers the encoder

to focus more on geometric and lighting information, which improves the

synthesis of shadows, albeit at the cost of encoding materials.

We also tested whether the auxiliary shadow generator can im-

prove the performance of pixel generators. The increase in visual

quality is subtle but still noticeable; Figure 15 shows three examples.

The impact on the partitioning is more pronounced; Figure 16 and

Table 2 confirm the growth of the geometry partition at the cost

of the material partition. As a result, materials tend to be captured

with lower accuracy. This can be observed on some of the objects

(see the middle row of Figure 15). Adding an auxiliary generator

thus does not necessarily lead to better overall results—quantitative

metrics remained unaffected in this case—but rebalances the focus

of the encoder.

6 APPLICATIONS

In this section, we explore two possible applications that (composi-

tional) neural scene representations could improve in the future.

6.1 Rendering Indirect Illumination

One shortcoming of the neural model employed in this article (up

to this point) is the rather poor visual quality on high-frequency

visual features. However, the fine details and structures due to lo-

cal illumination can be synthesized inexpensively using classical

methods (if an accurate 3D model is available). The output from

the classical renderer can be provided to the neural renderer as

an additional input, or simply combined with the generated image.

The two renderers can complement each other with the neural one

focusing on the costly effects only.

We investigate one such scenario in Figure 17: we compute di-

rect illumination via ray tracing and optimize the neural model to

produce only indirect illumination. We augment the G-buffer to

Lighting partition Geometry partition Material partition Null partition
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(a) Pixel generator (b) + aux. shadow generator

Fig. 16. A model with a single pixel generator (left) can be steered towards

extracting more geometry information (blue) by adding an auxiliary shadow

generator (right).

Table 2. Relative partition sizes for the models from Figure 15 and Figure 16

after one million of training iterations.

Pixel generator + aux. shadow generator

Lighting partition 25% 23%

Geometry partition 17% 28%

Material partition 53% 43%

Null partition 5% 6%

include material information (diffuse albedo and surface roughness);

this improves material encoding and synthesis quality. Lastly, the

ray-traced image is also input into the neural generator, allowing it

to learn direct-to-indirect radiance transfer; this works remarkably

well with convolutional architectures [Nalbach et al. 2017].

In our experiments, however, we used the pixel generator that

upscales the scene information (learned at low resolutions) to high

resolutions more gracefully than the U-net generator (see the com-

parisons of different generators in the supplementary material). The

test scenes feature notable interreflection between objects, e.g. be-

tween teapots and tables or between sofas and pillows, that are

synthesized fairly well. Indirect illumination over long distances,

such as the yellow tint on the ceiling (top row) due to light bouncing

off the carpet and sofas, is reproduced by the neural model as well.

Our unoptimized implementation utilizing PyTorch for inference

and accelerating tracing of rays using Optix required: 7 minutes to

trace the direct-illumination buffer (8k spp), and 400 ms to predict

the indirect-illumination; both at 1k×1k resolution using an NVIDIA

RTX 6000 GPU. Path-tracing the indirect-illumination references

(8k spp) required 25 minutes; we list this merely for completeness

and leave comparisons to state-of-the-art GI renderers for future

work.

6.2 Editing in Latent Space

We can exploit the compositionality of our neural scene representa-

tion to perform scene edits directly on the (latent) scene representa-

tion. The task of transferring information between latent codes of

different scenes is challenging for monolithic representations that

do not feature a clear separation of individual components. As long

as the scene representation is appropriately partitioned, such edits

become straightforward.
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(a) Reference direct illum. (b) Predicted indirect illum. (c) Reference indirect illum. (a)+(b) (a)+(c)

Fig. 17. Neural synthesis of indirect illumination. The neural model is optimized to predict indirect illumination only from the neural scene representation,

G-buffer w/ geometry and material information, and the direct illumination buffer. Results show that both local and distant interreflections are synthesized

fairly accurately. Predictions of mirror reflections (teapot in top row and mirror in bottom row) suffer from overbluring. The supplementary material describes

a possible remedy by including information about reflection rays in the G-buffer.
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Fig. 18. Examples of relighting application, where the lighting partition of

scene A replaces the lighting partition of scene B. The relighting result is

shown in the right column.

In Figure 18, we replace the lighting partition in the representation

of Scene B with the lighting partition of Scene A. We then feed

the composited representation and the G-buffer of Scene B into

the pixel generator. The generated image is shown in the third

Lighting 1 Lighting 2

Fig. 19. Lighting partition interpolation, where the interpolation endpoints

were extracted from lighting partitions of two other scenes, shows that

indirect color bleeding and specular highlights are correctly synthesized

even though the material partition remains constant. This proves that the

model has learned to properly separate materials from lighting.

column; reference renderings are included below. The shadows and

highlights are repositioned correctly in both studied cases.

One could also exercise the idea of transfering materials. Our

model supports this as long as the two scenes have identical ge-

ometry, i.e. the mapping of materials to objects is identical in both

scenes and transferring the material partition merely changes the

material definition. When the scenes differ in geometry, material

transfer requires deeper understanding of the content (e.g. semantic

roles of individual surfaces) to map material sources to targets.

In Figure 19, we perform a linear interpolation between two light-

ing configurations to demonstrate that highlights and shadowsmove

gradually, as if the light source was moving, instead of blending

intensities of two light sources; see the supplementary video for

additional animations.

7 DISCUSSION AND FUTURE WORK

Implicit vs. explicit disentanglement. Neural representations tend
to be naturally disentangled to some degree, as demonstrated with

GQNs using scene algebra experiments [Eslami et al. 2018] or with

VAEs by manipulating latent variables [Higgins et al. 2017]. These
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Obs. 1 Obs. 2 Obs. 3 Prediction Reference

Fig. 20. The model is capable of extracting the color of the orange wall from

indirect lighting in the observations when the wall is not observed directly.

approaches put fewer constraints on the model than our method,

but they may not yield the desired, or full disentanglement.

Explicit partitioning provides means to enforce constraints that

the model should never violate. Our adaptive partitioning scheme

can mitigate performance penalty of static partitioning due to im-

properly allocating bits in the scene representation. However, the

negative impact of disentanglement on the quality of the image syn-

thesis remains. Designing disentanglement and partitioning tech-

niques that retain the performance of monolithic representations is

an important direction for future research.

In this article, the content of individual partitions is orthogonal.

Having a clear separation between the scene components has two

distinct benefits. First, the explicit partitioning facilitates a straight-

forward attribution analysis that offers valuable insights into the

inner workings of different neural models (see Figure 14). Second,

it enables basic scene compositing operations, such as relighting

through the swapping of lighting partitions (Figure 18). It is worth

noting that explicit partitioning does not preclude discovering addi-

tional factors of variation using different methods. Striking a good

balance between the two is an interesting topic for future research.

Fine-grained compositionality. We partition the scene information

at a very coarse level: materials, lighting, and geometry. We view

this as the first step towards truly compositional, modular repre-

sentations that will enable building complex scenes from smaller

modules. Such (hierarchical) scene representations will allow fine-

grained edits, for instance replacing the material of one specific

object with the material of another object, possibly from a different

scene. Enforcing compositionality at a finer level is an important

goal that we hope future work will achieve.

Generalization and challenging cases. Our model is capable of

extracting subtle clues from indirect illumination, e.g. to correctly

predict the material of an unobserved wall (see Figure 20). However,

it sometimes struggles with seemingly simple configurations (see

Figure 21), if they were not encountered during training. While

concerning, this limitation is not specific to our approach and other

works in the domain suffer from poor generalization as well. We

expect refined compositionality of the scene representation to play

a central role also in addressing generalization issues.

Validity of design decisions. We deliberately restricted the use of

classical rendering algorithms to a specific subset of image buffers.

This was done with the intent of facilitating the analysis of the

inner workings of the model, for instance by providing no material

and lighting information in the G-buffer when studying attribution

in Figure 12.

Obs. 1 Obs. 2 Obs. 3 Prediction Reference

Fig. 21. An example of poor generalization of the model to a scene with

“unknown“ materials; gray color was never used for the walls in the training

dataset, only for the floor and the ceiling. The model incorrectly maps the

gray color of the walls in the observations to shades of green and pink.

In Figure 17, we departed from the clear separation and added

material information to the G-buffer. The final image was obtained

by combining outputs from a classical and a neural renderer; we

expect such splits of the rendering task to be most rewarding in

the future. We also note that specular and glossy reflections can be

further improved by including parameters of perfect-reflection rays;

see the supplementary material for additional results.

Another decision worth revisiting is the extraction of the scene

representation from a set of image buffers. The observations have

the benefit of including all effects of global light transport that we

strive to synthesize, but other forms of input, e.g. omnimaps, voxel

representations, unstructured sets of radiance estimates, light fields,

or textual descriptions could suit specific applications better.

8 CONCLUSION

We extended the disentanglement technique of Kulkarni et al. [2015]

to respect the entropy of individual components and applied it

to neural scene representations to adaptively partition lighting,

geometry, and material information. By adding the null partition,

which serves as a reservoir of available bits during training, we

extract compressed neural representations of the scene.

Our experiments highlight the desirable properties offered by

adaptive partitioning, namely the enhanced interpretability and

control. Specifically, we were able to refine existing attribution

methods to reveal whether pixels in observations influenced the

final synthesized pixel values through the lighting, geometry, and/or

material information encoded in the scene representation. We also

studied the artifacts of different image generators, and propose to

fix poor performance by adding an auxiliary generator that steers

the scene encoding towards information that is otherwise missing

from the neural scene representation.

Yet, the results generated by most models in this paper suffer

from visual artifacts. We thus investigated a scenario, where the

neural renderer generates indirect illumination only to complement

a classical ray tracer; we believe complementing traditional graphics

algorithms, rather than replacing them, is a fruitful direction for

future research if production rendering is the ultimate goal.

Addressing the quality and scaling remains a priority for future

work as artifacts may not go away by merely increasing the size

of networks and datasets. We believe that imposing additional con-

straints and principles of light transport over neural models will be

necessary to yield realistically looking images. Understanding the

inner workings of a model will be paramount for injecting these

constraints; our work presents an important step in that direction.
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